
Proprietary & ConfidentialGoogle Events + Experiences Proprietary & Confidential

Simplifying LLM Serving
Pipelines with GKE
Inference Gateway
Efficient, Scalable, and Secure LLM Inference with GKE

Ananda Dwi Rahmawati

● Cloud & DevOps Engineer, Singapore
● Google Developer Expert Cloud - Modern

Architecture
● Master of Computer Science - University of

Texas at Austin
● https://linktr.ee/misskecupbung

https://linktr.ee/misskecupbung

“By leveraging GKE Inference Gateway, organizations
can automate traffic management, scale LLM

inference workloads efficiently, and enforce robust
security—simplifying the operational complexity of

production AI pipelines.”

Google I/O Extended 25 Proprietary & Confidential

Inference
Latency

Operational
Costs Scalability

Model Lifecycle
Management

Resource
Underutilization

Complexity

AI models are increasingly complex, demanding significant
computational resources.

Introduction - The Challenge of AI Inference

 Dependency

Management

Google I/O Extended 25 Proprietary & Confidential

Real-Time Customer Support Chatbot

A company deploys an LLM-powered chatbot
to handle customer inquiries on their website.
GKE Inference Gateway enables seamless
scaling and secure access, ensuring fast,
reliable responses even during peak traffic.

The Challenges
● Organizations deploy Large Language Models (LLMs) for

applications like conversational AI, semantic search, and
content generation. Production LLM serving introduces
challenges:

○ Orchestrating complex deployment pipelines for
model hosting and inference

○ Dynamically scaling compute resources (CPU, GPU,
TPU) for bursty traffic

○ Enforcing secure authentication, authorization, and
network isolation

○ Optimizing resource allocation to control costs and
maintain performance

○ Integrating monitoring, logging, and tracing for
observability

○ A managed, cloud-native solution is needed to
abstract these complexities, enabling efficient, secure,
scalable LLM inference in production.

Google I/O Extended 25 Proprietary & Confidential

● Understand how GKE Inference Gateway reduces complexity in
deploying and managing LLM serving pipelines.

● Learn best practices for scalable, secure, and cost-effective
LLM inference on Kubernetes.

● Discover how to leverage managed traffic routing, autoscaling,
and observability features for production workloads.

● Gain practical insights from real-world deployment examples and
actionable steps for your own LLM projects.

Key Takeaways

AI Hypercomputer Architecture

Flexible Consumption

Dynamic Workload Scheduler On Demand CUD Spot

Open Software
JAX, TensorFlow, PyTorch

Multislice Training, Multihost Inference, XLA

Google Kubernetes Engine & Compute Engine

Performance-Optimized Hardware
Compute

(GPUs, TPUs, CPUs)
Storage

(Block, File, Object)
Networking

(OCS, Jupiter)

Intelligent Resource
Optimization

High Flexibility,
Usability, and
Optionality

Exceptional
Performance and

Efficiency

AI
Hypercomputer

Google
Vertex AI

NVIDIA DGX
Cloud

Ecosystem
Platform &
Solutions

State-of-the-Art
Models & Integrated
Developer PlaŴorm

Flexible Consumption

Dynamic Workload Scheduler On Demand CUD Spot

Open Software
JAX, TensorFlow, PyTorch

Multislice Training, Multihost Inference, XLA

Google Kubernetes Engine & Compute Engine

Performance-Optimized Hardware
Compute

(GPUs, TPUs, CPUs)
Storage

(Block, File, Object)
Networking

(OCS, Jupiter)

Optimizing system-level co-design streamlines
the entire AI lifecycle—from training to tuning and
serving

Google Cloud AI Hypercomputer

010

Google Cloud Infrastructure (CPU / GPU / TPU)

Google Kubernetes Engine

JAX, TensorFlow, PyTorch, XLA

Open Software and Frameworks
Jupyter, Ray, KubeFlow, Spark

Dynamic Workload Scheduler

Node Provisioning and Autoscaling
Flexible Consumption (On-Demand, CUD, Spot)

Kueue Job Queuing

Distributed Training
High Throughput Scaling Autopilot

Scaled Inference
Pod Fast Starts

Google Kubernetes Engine
cloud native infrastructure
for AI training and inference

● Limitless Scale: Deploy AI at
industry-leading scale, supporting
thousands of TPUs and nodes.

● Cost-Efficient Performance:
Maximize price-performance with smart
GPU/TPU use, job queuing, and fast
provisioning.

● Effortless Ops: Focus on models, not
infra, with GKE Autopilot's managed,
optimized Kubernetes.

● Enterprise Reliability: Trust AI
workloads to the leading Kubernetes
contributor's cloud-native infra.

1 Portability & Customizability

Choice of frameworks and ecosystem tools that are
portable

2 Performance & Scalability

Scale the platform for supercomputer scale training and
inference

3 Cost-Efficiency

Increase utilization of valuable resources while reducing
operational overhead

Why Google
Kubernetes
Engine for AI

World’s largest distributed training job on GKE
with TPU Multislice Training

Google Internal data for TPU v5e As of November, 2023: All numbers normalized per chip. seq-len=2048
for 32 billion parameter decoder only language model implemented using MaxText. *2

Scaled to

50,000+
TPU v5e chips

Google I/O Extended 25 Proprietary & Confidential

What is GKE Inference Gateway?

Managed Inference
Serving Layer

GKE Inference Gateway provides
a fully managed, scalable layer
for serving machine learning
model inferences on Google
Kubernetes Engine.

Simplified Traffic Routing

It automatically routes inference
requests to the appropriate
model endpoints, supporting
versioning and canary
deployments with minimal
configuration.

Integrated Security and
Observability

The gateway offers built-in
authentication, authorization,
and monitoring features,
enabling secure and observable
model serving out of the box.

Google I/O Extended 25 Proprietary & Confidential

● Client Request
○ Client sends a request in OpenAI API format to the GKE Inference Gateway.

● Body-Based Routing Extension
○ Extracts model ID from the request body.
○ Routes request via Gateway API HTTPRoute using this identifier.
○ Enables flexible, content-aware routing.

● Security Extension
○ Applies Model Armor or third-party security policies.
○ Performs content filtering, threat detection, sanitization, and logging.
○ Secures both request and response paths.

● Endpoint Picker Extension
○ Monitors KV-cache, queue lengths, and LoRA adapter status.
○ Selects optimal model replica based on real-time metrics.
○ Maximizes throughput and reduces inference latency.

● Final Routing
○ Request is forwarded to the chosen model replica in the InferencePool.
○ Model processes and returns the inference result.

How the Request Works?

Google I/O Extended 25 Proprietary & Confidential

To create an InferencePool using Helm, perform the following steps:

helm install vllm-llama3-8b-instruct \

 --set inferencePool.modelServers.matchLabels.app=vllm-llama3-8b-instruct \

 --set provider.name=gke \

 --version v0.3.0 \

 oci://registry.k8s.io/gateway-api-inference-extension/charts/inferencepool

Save the following sample manifest as inferencemodel.yaml:

apiVersion:

inference.networking.x-k8s.io/v1alpha2

kind: InferenceModel

metadata:

 name: inferencemodel-sample

spec:

 modelName: MODEL_NAME

 criticality: VALUE

 poolRef:

 name: INFERENCE_POOL_NAME

Apply the sample manifest to your cluster:

kubectl apply -f inferencemodel.yaml

Create an InferenceModel that serves the food-review LoRA model on the vllm-llama3-8b-instruct InferencePool

with Standard criticality, while the base model is served with a Critical priority level.

apiVersion: inference.networking.x-k8s.io/v1alpha2
kind: InferenceModel
metadata:
 name: food-review
spec:
 modelName: food-review
 criticality: Standard
 poolRef:
 name: vllm-llama3-8b-instruct
 targetModels:
 - name: food-review
 weight: 100

apiVersion: inference.networking.x-k8s.io/v1alpha2
kind: InferenceModel
metadata:
 name: llama3-base-model
spec:
 modelName: meta-llama/Llama-3.1-8B-Instruct
 criticality: Critical
 poolRef:
 name: vllm-llama3-8b-instruct

Save the following sample manifest as gateway.yaml:

apiVersion: gateway.networking.k8s.io/v1
kind: Gateway
metadata:
 name: GATEWAY_NAME
spec:
 gatewayClassName: GATEWAY_CLASS
 listeners:
 - protocol: HTTP
 port: 80
 name: http

Apply the sample manifest to your cluster:

kubectl apply -f gateway.yaml

To create an HTTPRoute, save the following sample manifest as httproute.yaml:

apiVersion: gateway.networking.k8s.io/v1
kind: HTTPRoute
metadata:
 name: HTTPROUTE_NAME
spec:
 parentRefs:
 - name: GATEWAY_NAME
 rules:
 - matches:
 - path:
 type: PathPrefix
 value: PATH_PREFIX
 backendRefs:
 - name: INFERENCE_POOL_NAME
 group: inference.networking.x-k8s.io
 kind: InferencePool

Apply the sample manifest to your cluster:

kubectl apply -f httproute.yaml

GKE Inference
Performance

QnA
(Answers Not Guaranteed)

Thank You

