

Optimizing AI Inference with GKE: Reducing Costs and Latency

Ananda Dwi Rahmawati
Google Developer Expert Cloud

Agenda

Introduction to AI Inference on GKE

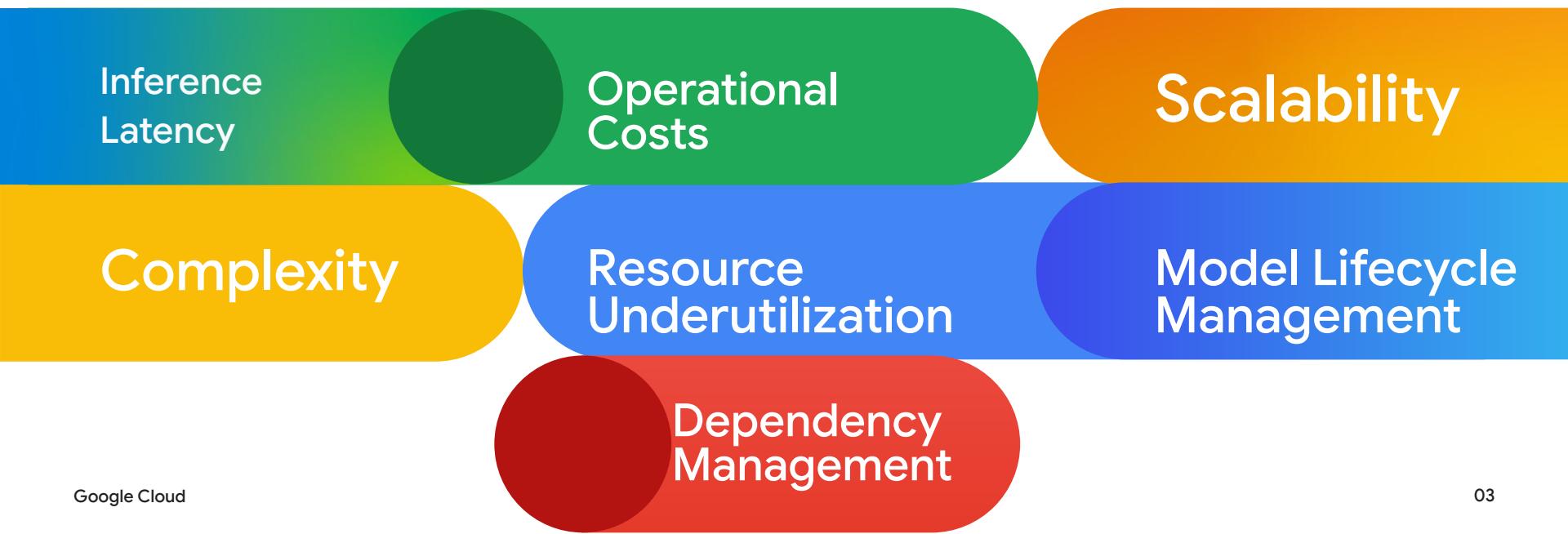
Strategies for Reducing Inference Latency on GKE

Cost Optimization for AI Inference Workloads

Best Practices and What's Next to Do

Introduction - The Challenge of AI Inference

AI models are increasingly complex, demanding significant computational resources.



Google Cloud AI Hypercomputer

Flexible Consumption

Dynamic Workload Scheduler

On Demand

CUD

Spot

Open Software

JAX, TensorFlow, PyTorch

Multislice Training, Multihost Inference, XLA

Google Kubernetes Engine & Compute Engine

Performance-Optimized Hardware

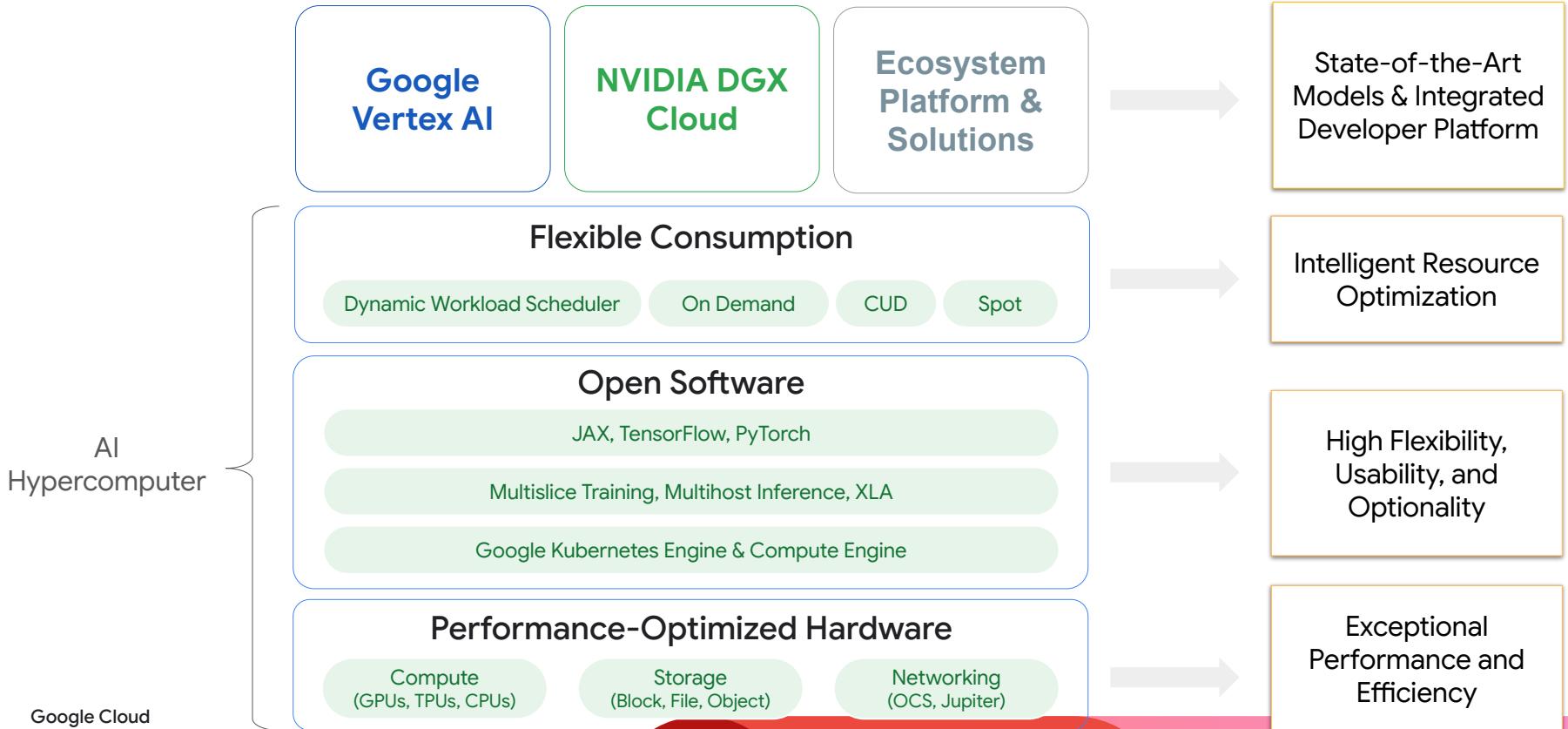
Compute
(GPUs, TPUs, CPUs)

Storage
(Block, File, Object)

Networking
(OCS, Jupiter)

Optimizing system-level co-design streamlines the entire AI lifecycle—from training to tuning and serving

AI Hypercomputer Architecture



Why Google Kubernetes Engine for AI

1

Portability & Customizability

Choice of frameworks and ecosystem tools that are portable

2

Performance & Scalability

Scale the platform for supercomputer scale training and inference

3

Cost-Efficiency

Increase utilization of valuable resources while reducing operational overhead

Google Kubernetes Engine

cloud native infrastructure for AI training and inference

- **Limitless Scale:** Deploy AI at industry-leading scale, supporting thousands of TPUs and nodes.
- **Cost-Efficient Performance:** Maximize price-performance with smart GPU/TPU use, job queuing, and fast provisioning.
- **Effortless Ops:** Focus on models, not infra, with GKE Autopilot's managed, optimized Kubernetes.
- **Enterprise Reliability:** Trust AI workloads to the leading Kubernetes contributor's cloud-native infra.

Google Kubernetes Engine

Open Software and Frameworks

JAX, TensorFlow, PyTorch, XLA

Jupyter, Ray, KubeFlow, Spark

Distributed Training

Queue Job Queuing

High Throughput Scaling

Scaled Inference

Autopilot

Pod Fast Starts

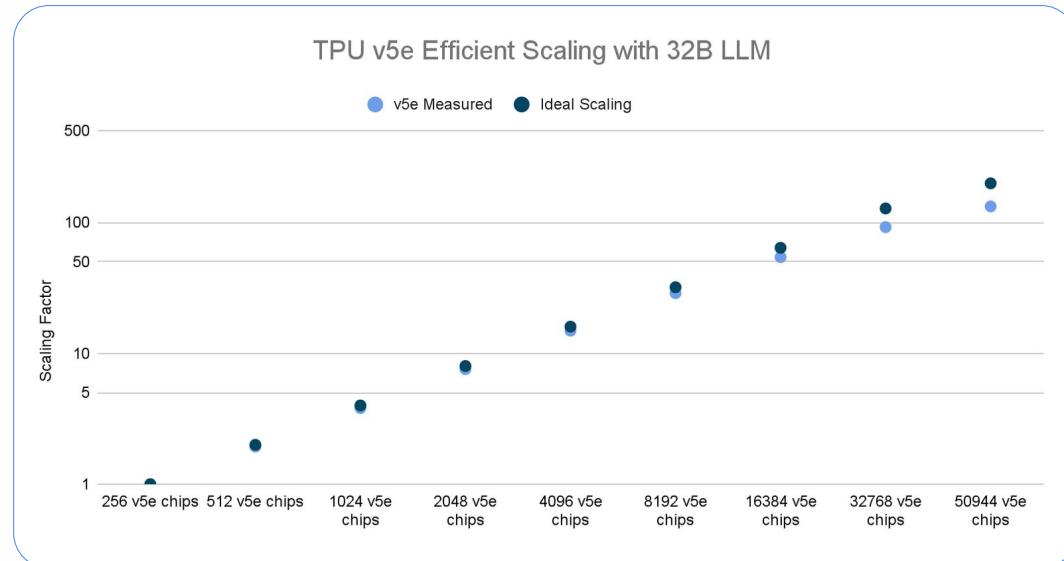
Node Provisioning and Autoscaling

Dynamic Workload Scheduler

Flexible Consumption (On-Demand, CUD, Spot)

Google Cloud Infrastructure (CPU / GPU / TPU)

World's largest distributed training job on GKE with TPU Multislice Training



Scaled to
50,000+
TPU v5e chips

Google Internal data for TPU v5e As of November, 2023: All numbers normalized per chip. seq-len=2048
for 32 billion parameter decoder only language model implemented using MaxText. *2

Strategies for Reducing Inference Latency

Understanding the Bottlenecks

- 🚫 **Model Size & Complexity:** Larger models inherently take longer to process.
- 🚫 **Compute Resources:** Insufficient CPUs/GPUs or outdated hardware.
- 🚫 **Network Latency:** Data transfer between client, GKE, and data sources.
- 🚫 **Software Stack Overhead:** Inefficient inference servers, redundant data processing.
- 🚫 **Batching Strategies:** Incorrect batch sizes can lead to underutilization or increased latency.

Strategies for Reducing Inference Latency

Software & Deployment Optimizations

- **Model Quantization & Pruning:** Reduce model size and complexity without significant accuracy loss.
- **Optimized Inference Frameworks:** Use frameworks like TensorFlow Serving, TorchServe, Triton Inference Server.
- **GKE Inference Gateway**
- **KubeFlow Serving (KServe)**

Strategies for Reducing Inference Latency

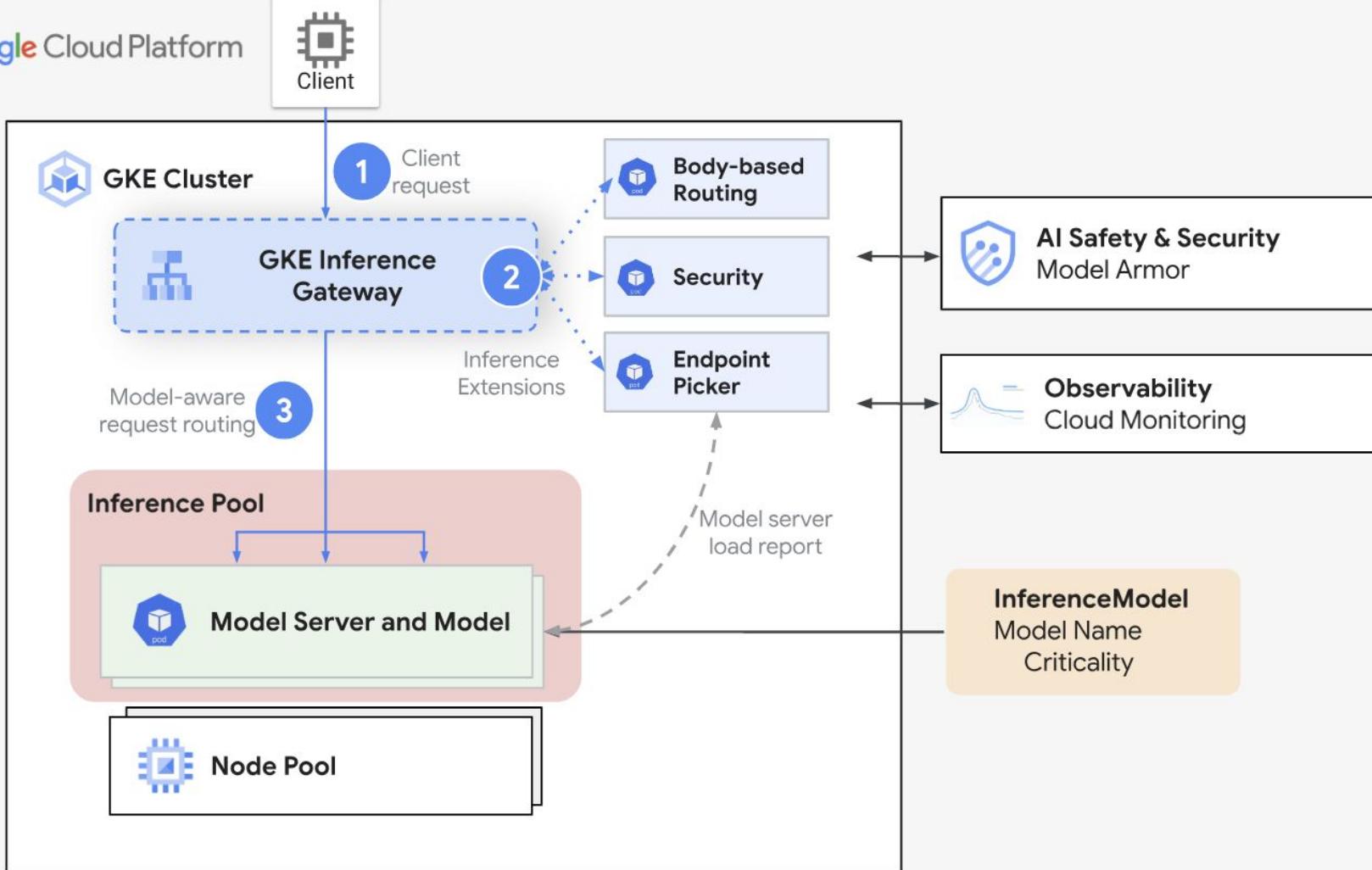
Smart Scaling and Batching

 Horizontal Pod Autoscaler (HPA): Scale pods based on CPU/memory utilization or custom metrics (e.g., QPS, latency).

 Vertical Pod Autoscaler (VPA): Automatically adjust CPU and memory requests/limits for pods.

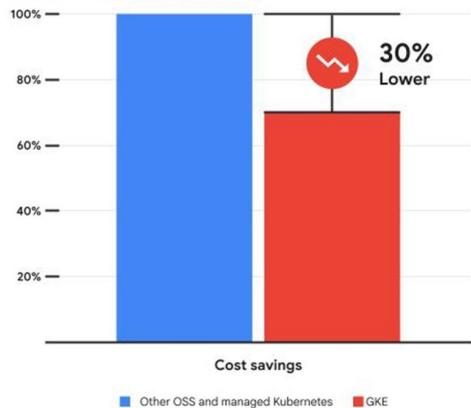
 Cluster Autoscaler: Automatically adjust the number of nodes in your GKE cluster based on pod resource requests.

 Dynamic Batching (with Triton): Grouping multiple inference requests into a single batch for efficient GPU utilization.

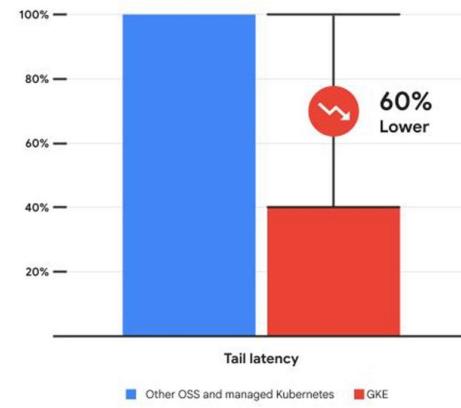


GKE Inference Performance

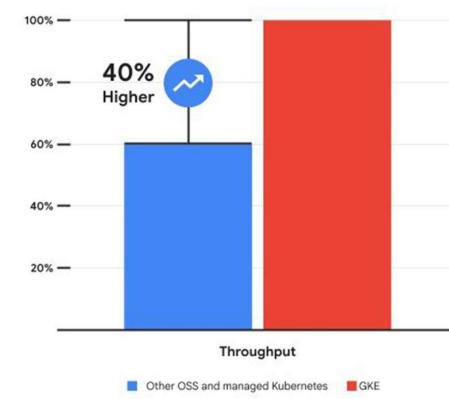
Cost to serve the same demand
(lower is better)



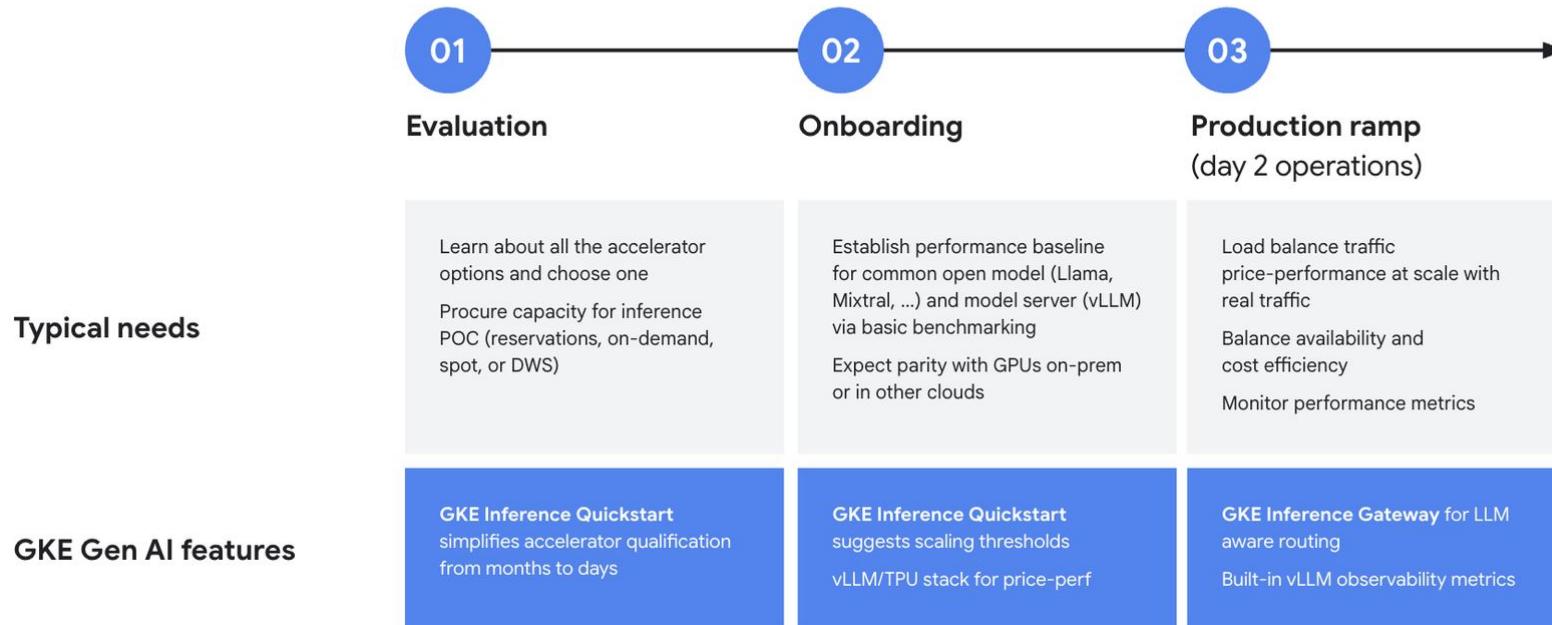
Tail latency of LLM (lower is better)



Throughput of LLM (higher is better)



Solution mapping to customer journey



Thank you

@misskecupbung

