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Operating ML models, presents several challenges:

*  Model drift: As real-world data changes,
models become less accurate, requiring
frequent retraining. S

* Resource management: ML workloads have

. . .. g Explainability
varying demands, making efficient
allocation crucial.

. . . . ‘rb Model Drift
* Data quality: Consistent, reliable input data %

is essential for model performance. g
. . ﬁ_}] Deployment
* Compliance: Meeting governance and
regulatory requirements is challenging. ézé Ethical and
* Versioning: Tracking models, datasets, and

experiments is difficult at scale.

Legal Concerns

Challenges :

in Building

Al/ML Models

Data Bias @
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Overfitting DB'%/';

Data Quality
and Quantity

Lack of <2
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Integration with @
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" Introducing MLOps

e Model development
e Model evaluation
e  Parameter tuning

Data engineering

e Pipeline development
Integration of model
into business
application

Software
Engineering

Machine
Learning

Operations

/

e Model deployment

e Metadata management Google
\ e Logging and monitoring Developer
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MLOps: quick recap




ML Solution Lifecycle

Training Serving

Continuous
Monitoring

Experimentation/

Continuous Training Model CI/CD
Development




Reliable and repeatable training
Automated E2E Pipelines

Orchestrated experimentation Source
code Source
Data Model Model o X
Development B o el Valid. Repository
datasets
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Reliable and repeatable training
Automated E2E Pipelines

Orchestrated experimentation E Source
code
Dat Model » Source
ata .
Development Extraction Training RePOSItory
datasets
Training pipeline CI/CD ML pipeline
: y Artifacts
P Build Run s e et Deploy to » Artifact
components & automated artifacts target Store
pipelines tests environment
Trained
. Continuous training Models
Training > Data Data Model = Model

Extraction Valid. , Trainin Registry
datasets ' ning



Reliable and monitored serving
Automated E2E Pipelines

Source Model Deployment CI/CD
Repository

Build Prediction Run Automated Deploy to Target

Service Tests Environment

Model
Registry



Reliable and monitored serving
Automated E2E Pipelines

Source Model Deployment CI/CD
Repository
Build Prediction Run Automated Deploy to Target
Service Tests Environment
Model :
Registry

:v EPerformance
Serving infrastructure and eventlogs Log Store

Live Data — . . '
Predict Explain Evaluate Monitor
E Evaluations, ML Metadata

Data Drift and
Concept Drift
notifications



“In control theory, observability
is @ measure of how well internal
states of a system can be inferred

from knowledge of its external

outputs.”
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“Monitoring tells you whether
a system is working;

Observability lets you
understand why isn't

working.”
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4 Unique ML Characteristics )

Resource Patterns:

e Sustained high GPU usage during training vs consistent CPU usage in traditional apps
e Specialized GPU node scheduling vs typical short-lived batch jobs
e Variable computational demands requiring dynamic resource allocation

Monitoring Focus:

e Model-specific metrics: Accuracy, F1 scores (irrelevant for standard applications)
e Data drift monitoring: Track shifts in user preferences and data patterns
e Continuous feedback loops: Analyze interactions for targeted improvements

e Granular observations: Sometimes per-prediction monitoring vs standard application
metrics
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Observability

Observability = gaining insights into ML model behavior & infrastructure.

Enables Teams to:

e Quickly identify and diagnose issues

e Optimize resource usage

e Ensure compliance

e Monitor model performance and detect drift
e Track data quality and integrity

Feedback Loop:

e Continuous monitoring and retraining using real-world data

e Helps models adapt to user behavior, new data patterns, and emerging trends
e Drives better decision-making, user experience, and business value
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Pillar

Data Quality

Fairness / Bias

Explainability

Model
Performance /
Drift

o

What It Covers

Detect schema mismatches, cardinality
shifts, out-of-range values; track
distribution drift in features.

Pre- and post-training bias detection;
monitor predictions’ distribution across
sensitive groups.

Understand which features drive
predictions (global & local); detect
unjustified dependencies.

Monitor model accuracy, recall, F1, etc.;
detect concept drift; compare predictions
vs ground truth.

The Need for ML Observability in MLOps

GCP Services / Methods

Vertex Al Feature Monitoring for feature drift & anomalies; batch & streaming
ingestion via BigQuery, Dataflow, or Cloud Storage; establish baseline datasets
with Vertex Al Data Labeling and Data Quality checks.

Vertex Al Fairness Indicators to compute fairness metrics across facets;
integrate with model evaluation pipelines in Vertex Al Experiments.

Vertex Al Explainable Al using SHAP/LIME-like methods; feature attribution for
global & local explanations; visualize top features, heatmaps, and partial
dependence plots.

Vertex Al Model Monitoring for drift detection and performance metrics;
optionally use TensorFlow Data Validation (TFDV) or open-source libs like

J
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Observability checks
I

Feature attribution drift

l

Track changes in feature
contribution

) 1 L 1
Concept drift Bias metrics drift Data drift

J l '

) )
Monitor changes Monitor Monitor changes
- Parf anee Monitor changes changes in embeddings
R ?n c:;mance in bias metrics in data distribution for
£l distribution images or text

+ Model accuracy

+ Model score drifts

+ Monitor drift
between train
baseline and
production scoring

+ Model fairness

+ Monitor feature drifts across tabular
(structured) and unstructured (images,
video) data

+ Explainability
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Let’'s Demo
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