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Operating ML models, presents several challenges:

• Model drift: As real-world data changes, 

models become less accurate, requiring 

frequent retraining.

• Resource management: ML workloads have 

varying demands, making efficient 

allocation crucial.

• Data quality: Consistent, reliable input data 

is essential for model performance.

• Compliance: Meeting governance and 

regulatory requirements is challenging.

• Versioning: Tracking models, datasets, and 

experiments is difficult at scale.

Source: https://www.dqlabs.ai/blog/impact-of-data-quality-on-model-performance/
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“In control theory, observability 

is a measure of how well internal 

states of a system can be inferred 

from knowledge of its external 

outputs.”
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“Monitoring tells you whether 

a system is working; 

Observability lets you 

understand why isn't 

working.”
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Unique ML Characteristics

Resource Patterns:

● Sustained high GPU usage during training vs consistent CPU usage in traditional apps
● Specialized GPU node scheduling vs typical short-lived batch jobs
● Variable computational demands requiring dynamic resource allocation

Monitoring Focus:

● Model-specific metrics: Accuracy, F1 scores (irrelevant for standard applications)
● Data drift monitoring: Track shifts in user preferences and data patterns
● Continuous feedback loops: Analyze interactions for targeted improvements
● Granular observations: Sometimes per-prediction monitoring vs standard application 

metrics
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Observability

Observability = gaining insights into ML model behavior & infrastructure. 

Enables Teams to:

● Quickly identify and diagnose issues
● Optimize resource usage
● Ensure compliance
● Monitor model performance and detect drift
● Track data quality and integrity

Feedback Loop:

● Continuous monitoring and retraining using real-world data
● Helps models adapt to user behavior, new data patterns, and emerging trends
● Drives better decision-making, user experience, and business value
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The Need for ML Observability in MLOps
Pillar What It Covers GCP Services / Methods

Data Quality Detect schema mismatches, cardinality 
shifts, out-of-range values; track 
distribution drift in features.

Vertex AI Feature Monitoring for feature drift & anomalies; batch & streaming 
ingestion via BigQuery, Dataflow, or Cloud Storage; establish baseline datasets 
with Vertex AI Data Labeling and Data Quality checks.

Fairness / Bias Pre- and post-training bias detection; 
monitor predictions’ distribution across 
sensitive groups.

Vertex AI Fairness Indicators to compute fairness metrics across facets; 
integrate with model evaluation pipelines in Vertex AI Experiments.

Explainability Understand which features drive 
predictions (global & local); detect 
unjustified dependencies.

Vertex AI Explainable AI using SHAP/LIME-like methods; feature attribution for 
global & local explanations; visualize top features, heatmaps, and partial 
dependence plots.

Model 
Performance / 
Drift

Monitor model accuracy, recall, F1, etc.; 
detect concept drift; compare predictions 
vs ground truth.

Vertex AI Model Monitoring for drift detection and performance metrics; 
optionally use TensorFlow Data Validation (TFDV) or open-source libs like 
nannyML.
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Thank you!


