ﬁ DevFest 3] f A
e N

! Observability for GenAl
Apps: Logging, Metrics, &
Tracing on GCP

Ananda Dwi Rahmawati ,/
Google Developer Expert - Cloud

} f‘aeg.

{E DevFest
C

GDG Bandung)

Ananda Dwi Rahmawati

d Cloud & DevOps Engineer, Singapore

[Google Developer Expert Cloud - Modern Architecture

d Master of Computer Science - University of Texas at
Austin

| https://linktr.ee/misskecupbung

Google
Developer
Groups

https://linktr.ee/misskecupbung

-

Operating ML models, presents several challenges:

* Model drift: As real-world data changes,
models become less accurate, requiring
frequent retraining. S

* Resource management: ML workloads have

. . .. g Explainability
varying demands, making efficient
allocation crucial.

. . . . ‘rb Model Drift
* Data quality: Consistent, reliable input data %

is essential for model performance. g
. . ﬁ_}] Deployment
* Compliance: Meeting governance and
regulatory requirements is challenging. ézé Ethical and
* Versioning: Tracking models, datasets, and

experiments is difficult at scale.

Legal Concerns

Challenges :

in Building

Al/ML Models

Data Bias @

ol

Overfitting DB'%/';

Data Quality
and Quantity

Lack of <2
Skilled Talent

Integration with @
Legacy Systems

J

Google
Developer
Groups

" Introducing MLOps

e Model development
e Model evaluation
e Parameter tuning

Data engineering

e Pipeline development
Integration of model
into business
application

Software
Engineering

Machine
Learning

Operations

/

e Model deployment

e Metadata management Google
\ e Logging and monitoring Developer
Groups

MLOps: quick recap

ML Solution Lifecycle

Training Serving

Continuous
Monitoring

Experimentation/

Continuous Training Model CI/CD
Development

Reliable and repeatable training
Automated E2E Pipelines

Orchestrated experimentation Source
code Source
Data Model Model o X
Development B o el Valid. Repository
datasets

Reliable and repeatable training
Automated E2E Pipelines

Orchestrated experimentation Source
code Source
Development o e \iodel V Repositor
AR Extraction Training Valid. P Yy
Training pipeline CI/CD ML pipeline

Build R —_— Artifacts :
com (;Jrllents& autor’Lr‘\r;ted IIEE, EMEIH2ITE (tesroZtto - Artifact
e artifacts £l Shoie
pipelines tests environment

Reliable and repeatable training
Automated E2E Pipelines

Orchestrated experimentation E Source
code
Dat Model » Source
ata .
Development Extraction Training RePOSItory
datasets
Training pipeline CI/CD ML pipeline
: y Artifacts
P Build Run s e et Deploy to » Artifact
components & automated artifacts target Store
pipelines tests environment
Trained
. Continuous training Models
Training > Data Data Model = Model

Extraction Valid. , Trainin Registry
datasets ' ning

Reliable and monitored serving
Automated E2E Pipelines

Source Model Deployment CI/CD
Repository

Build Prediction Run Automated Deploy to Target

Service Tests Environment

Model
Registry

Reliable and monitored serving
Automated E2E Pipelines

Source Model Deployment CI/CD
Repository
Build Prediction Run Automated Deploy to Target
Service Tests Environment
Model :
Registry

:v EPerformance
Serving infrastructure and eventlogs Log Store

Live Data — . . '
Predict Explain Evaluate Monitor
E Evaluations, ML Metadata

Data Drift and
Concept Drift
notifications

“In control theory, observability
is @ measure of how well internal
states of a system can be inferred

from knowledge of its external

outputs.”

DevFest

GDG Bandung

i

OO0

“Monitoring tells you whether
a system is working;

Observability lets you
understand why isn't

working.”

DevFest

GDG Bandung

i

OO0

4 Unique ML Characteristics)

Resource Patterns:

e Sustained high GPU usage during training vs consistent CPU usage in traditional apps
e Specialized GPU node scheduling vs typical short-lived batch jobs
e Variable computational demands requiring dynamic resource allocation

Monitoring Focus:

e Model-specific metrics: Accuracy, F1 scores (irrelevant for standard applications)
e Data drift monitoring: Track shifts in user preferences and data patterns
e Continuous feedback loops: Analyze interactions for targeted improvements

e Granular observations: Sometimes per-prediction monitoring vs standard application
metrics

J

Google
\ Developer
Groups

Observability

Observability = gaining insights into ML model behavior & infrastructure.

Enables Teams to:

e Quickly identify and diagnose issues

e Optimize resource usage

e Ensure compliance

e Monitor model performance and detect drift
e Track data quality and integrity

Feedback Loop:

e Continuous monitoring and retraining using real-world data

e Helps models adapt to user behavior, new data patterns, and emerging trends
e Drives better decision-making, user experience, and business value

Google
Developer
Groups

o

4 Unique ML Characteristics)

Resource Patterns:

e Sustained high GPU usage during training vs consistent CPU usage in traditional apps
e Specialized GPU node scheduling vs typical short-lived batch jobs
e Variable computational demands requiring dynamic resource allocation

Monitoring Focus:

e Model-specific metrics: Accuracy, F1 scores (irrelevant for standard applications)
e Data drift monitoring: Track shifts in user preferences and data patterns
e Continuous feedback loops: Analyze interactions for targeted improvements

e Granular observations: Sometimes per-prediction monitoring vs standard application
metrics

J

Google
\ Developer
Groups

a

Pillar

Data Quality

Fairness / Bias

Explainability

Model
Performance /
Drift

o

What It Covers

Detect schema mismatches, cardinality
shifts, out-of-range values; track
distribution drift in features.

Pre- and post-training bias detection;
monitor predictions’ distribution across
sensitive groups.

Understand which features drive
predictions (global & local); detect
unjustified dependencies.

Monitor model accuracy, recall, F1, etc.;
detect concept drift; compare predictions
vs ground truth.

The Need for ML Observability in MLOps

GCP Services / Methods

Vertex Al Feature Monitoring for feature drift & anomalies; batch & streaming
ingestion via BigQuery, Dataflow, or Cloud Storage; establish baseline datasets
with Vertex Al Data Labeling and Data Quality checks.

Vertex Al Fairness Indicators to compute fairness metrics across facets;
integrate with model evaluation pipelines in Vertex Al Experiments.

Vertex Al Explainable Al using SHAP/LIME-like methods; feature attribution for
global & local explanations; visualize top features, heatmaps, and partial
dependence plots.

Vertex Al Model Monitoring for drift detection and performance metrics;
optionally use TensorFlow Data Validation (TFDV) or open-source libs like

J

nannyML.

Google
Developer
Groups

Observability checks
I

Feature attribution drift

l

Track changes in feature
contribution

) 1 L 1
Concept drift Bias metrics drift Data drift

J l '

))
Monitor changes Monitor Monitor changes
- Parf anee Monitor changes changes in embeddings
R ?n c:;mance in bias metrics in data distribution for
£l distribution images or text

+ Model accuracy

+ Model score drifts

+ Monitor drift
between train
baseline and
production scoring

+ Model fairness

+ Monitor feature drifts across tabular
(structured) and unstructured (images,
video) data

+ Explainability

/

Google
Developer
Groups

s

Let’'s Demo

Ol iyt s il

DevFest

nnnnnnnnn

Thank you! M

OO0

