
EKS Autoscaling with
Karpenter

Ananda Dwi Rahmawati

Place
image/photo

here

Hello!
- Sr. Cloud Engineer @ Btech
- AWS Container Hero
- Open Source Enthusiast and Communities

fellow
- Tech background: System, Networking, IaaS &

PaaS Cloud, DevOps, a bit of Programming
https://linktr.ee/misskecupbung

https://linktr.ee/misskecupbung

Agenda
■ Kubernetes
■ Autoscaler
■ Karpenter
■ Karpenter Demo
■ QnA

Pods and Workloads
■ Containers execute within pods.
■ A pod makes its environment available to containers; for example, its:

□ Network ports
□ IP address
□ Namespace

■ The term workload is sometimes used for how to deploy a pod.

Hardware

Operating System (OS)

Node

Pod Pod Pod

Nodes

■ Each node:
□ Is a virtual machine.
□ Has its own instance of the OS.

■ Nodes provide services to the pods.

OS

Pod Pod

OS

Node

Pod Pod Pod

Pod

OS

Node

Pod Pod

Hardware

Pod

Node

Clusters

■ Clusters are a set of one or more nodes.
■ The control plane (primary node) controls the other nodes in the

cluster.
■ The control plane is not visible in the console.

Control plane

Node Node

Node Node

Cluster Autoscaler is a tool that automatically adjusts the size of the Kubernetes cluster when
one of the following conditions is true:

● there are pods that failed to run in the cluster due to insufficient resources.
● there are nodes in the cluster that have been underutilized for an extended period of time

and their pods can be placed on other existing nodes.

Cluster Autoscaler

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

Open-source cluster autoscaler that automatically
provisions new nodes in response to unschedulable

pods.
Built with ❤ at AWS

https://aws.amazon.com/

Karpenter improves the efficiency and cost of running workloads on Kubernetes clusters by:

■ Watching for pods that the Kubernetes scheduler has marked as unschedulable
■ Evaluating scheduling constraints (resource requests, nodeselectors, affinities, tolerations, and

topology spread constraints) requested by the pods
■ Provisioning nodes that meet the requirements of the pods
■ Removing the nodes when the nodes are no longer needed

Karpenter

■ Improve application availability
■ Lower compute costs
■ Minimize operational overhead

Benefit(s)

■ Provision nodes based on workload requirements
■ Create diverse node configurations by instance type, using flexible workload provisioner

options.
■ Instead of managing many specific custom node groups, Karpenter could let you manage

diverse workload capacity with a single, flexible provisioner.
■ Achieve improved pod scheduling at scale by quickly launching nodes and scheduling pods.

Reason to use Karpenter

■ When there are no node in the Node group that matches the requirements of the pod and the
pod remains unscheduled, which could cause an outage.

■ While debugging these types of issues a common error message in autoscaler logs is pod didn't
trigger scale-up (it wouldn't fit if a new node is added)

■ Using too big instances in node groups, which leads to low resource utilization and increased
cost.

■ Using too low instances in Node groups, which leads to node groups maxing out and resulting in
unscheduled pods.

■ No way to identify the optimal choice of instance types based on workloads.

Reason to use Karpenter (vs Cluster Autoscaler)

How it works

https://s.id/1CTug

Demo

■ https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
■ https://karpenter.sh/
■ https://aws.github.io/aws-eks-best-practices/karpenter/
■ https://github.com/aws/karpenter
■ https://www.youtube.com/watch?v=3QsVRHVdOnM

References

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://karpenter.sh/
https://aws.github.io/aws-eks-best-practices/karpenter/
https://github.com/aws/karpenter
https://www.youtube.com/watch?v=3QsVRHVdOnM

Thank You

