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SPEAKER 

Operating ML models, presents several challenges:

• Model drift: As real-world data changes, models become less 

accurate, requiring frequent retraining.

• Resource management: ML workloads have varying demands, 

making efficient allocation crucial.

• Data quality: Consistent, reliable input data is essential for model 

performance.

• Compliance: Meeting governance and regulatory requirements is 

challenging.

• Versioning: Tracking models, datasets, and experiments is difficult 

at scale.

Source: https://www.dqlabs.ai/blog/impact-of-data-quality-on-model-performance/
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Introducing MLOps

● Data engineering
● Pipeline development
● Integration of model into 

business application

● Model deployment
● Metadata management
● Logging and monitoring

● Model development
● Model evaluation
● Parameter tuning
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ML Solution Lifecycle
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Architecture overview:

• Airflow for workflow orchestration Feast for feature

• management dbt for accelerated data transformation

• MLflow for experiment tracking and model management

Source: 
https://aws.amazon.com/blogs/machine-learning/building-an-efficient-mlops-platform-with-oss
-tools-on-amazon-ecs-with-aws-fargate/



“In control theory, observability is a measure of how well internal states 

of a system can be inferred from knowledge of its external outputs.”



“Monitoring tells you whether a system is working; 

Observability lets you understand why isn't working.”
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Unique ML Characteristics
Resource Patterns:

• Sustained high GPU usage during training vs consistent CPU usage in traditional apps

• Specialized GPU node scheduling vs typical short-lived batch jobs

• Variable computational demands requiring dynamic resource allocation

Monitoring Focus:

• Model-specific metrics: Accuracy, F1 scores (irrelevant for standard applications)

• Data drift monitoring: Track shifts in user preferences and data patterns

• Continuous feedback loops: Analyze interactions for targeted improvements

• Granular observations: Sometimes per-prediction monitoring vs standard application metrics

Source: https://www.dqlabs.ai/blog/impact-of-data-quality-on-model-performance/
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Observability
Observability = gaining insights into ML model behavior & infrastructure. 

Enables Teams to:

• Quickly identify and diagnose issues

• Optimize resource usage

• Ensure compliance

• Monitor model performance and detect drift

• Track data quality and integrity

Feedback Loop:

• Continuous monitoring and retraining using real-world data

• Helps models adapt to user behavior, new data patterns, and emerging trends

• Drives better decision-making, user experience, and business value

Source: https://www.cloudlaunchpad.app/blog/observability-in-aws-eks
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The Need for ML Observability in MLOps

Pillar What It Covers AWS Services / Methods

Data Quality Detect schema mismatches, cardinality shifts, out-of-range 
values; track distribution drift in features. (Grid Dynamics)

Use AWS SageMaker + Model Monitor; batch & 
streaming ingestion; baseline jobs. (Grid Dynamics)

Fairness / Bias Pre- and post-training bias detection; monitoring predictions’ 
distribution across sensitive groups. (Grid Dynamics)

AWS Clarify for bias metrics; set facets; integrate 
into model evaluation pipelines. (Grid Dynamics)

Explainability Understanding which features drive predictions (global & local); 
detecting unjustified dependencies. (Grid Dynamics)

Methods like SHAP, LIME; use feature attribution 
drift jobs; visualize top features & heatmaps. (Grid 
Dynamics)

Model 
Performance / 
Drift

Monitoring model accuracy, recall, F1, etc.; detecting concept 
drift; comparing predictions vs ground truth. (Grid Dynamics)

AWS Model Monitor, performance / drift jobs; 
optionally use open-source libs like nannyml. (Grid 
Dynamics)
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Let’s Demo
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Issue Timeline

Issue start Issue end
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How to Measuring
• Changes made to monitoring configuration

• "Out of hours" alerts

• Team alerting balance

• False positives & negatives

• Alert creation

• Alert acknowledgement

• Alert silencing and silence duration

• Unactionable alerts

• Usability: alerts, runbooks, dashboards

• MTTD, MTTR, impact
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