
Ananda Dwi Rahmawati
AWS Container Hero

Designing Observable
Microservice Architectures for

End-to-End ML Pipelines on AWS

Ananda Dwi Rahmawati

• Cloud & DevOps Engineer, Singapore

• AWS Container Hero

• Master of Computer Science - University of Texas at Austin

• https://linktr.ee/misskecupbung

Ananda Dwi Rahmawati
AWS Container Hero

SPEAKER

Operating ML models, presents several challenges:

• Model drift: As real-world data changes, models become less

accurate, requiring frequent retraining.

• Resource management: ML workloads have varying demands,

making efficient allocation crucial.

• Data quality: Consistent, reliable input data is essential for model

performance.

• Compliance: Meeting governance and regulatory requirements is

challenging.

• Versioning: Tracking models, datasets, and experiments is difficult

at scale.

Source: https://www.dqlabs.ai/blog/impact-of-data-quality-on-model-performance/

Machine
Learning

 Software
Engineering

Operations

Introducing MLOps

● Data engineering
● Pipeline development
● Integration of model into

business application

● Model deployment
● Metadata management
● Logging and monitoring

● Model development
● Model evaluation
● Parameter tuning

PROD

AI/ML
Platform

Data Lake

ML Metadata Management

Business Use Case

Training
Operationalization

Continuous
training

Model
Deployment

Prediction
Serving

Continuous
MonitoringML Development

Data and Feature Management

Production Applications & Processes

MLOps: quick recap

ML Solution Lifecycle

Experimentation/
Development Continuous Training Model CI / CD Continuous

Monitoring

Training Serving

Reliable and repeatable training
Automated E2E Pipelines

Orchestrated experimentation
Source

RepositoryData
Valid.

Data
Prep.

Model
Training

Model
Eval.

Source
code

Model
Valid.Development

datasets
Data

Extraction

Reliable and repeatable training
Automated E2E Pipelines

Orchestrated experimentation

Development
datasets

Source
RepositoryData

Extraction
Data
Valid.

Data
Prep.

Model
Training

Model
Eval.

Training pipeline CI/CD
Build

components &
pipelines

Run
automated

tests

Tag and store
artifacts

Deploy to
target

environment

Artifact
Store

Source
code

ML pipeline
Artifacts

Model
Valid.

Reliable and repeatable training
Automated E2E Pipelines

Orchestrated experimentation

Development
datasets

Source
RepositoryData

Extraction
Data
Valid.

Data
Prep.

Model
Training

Model
Eval.

Training pipeline CI/CD
Build

components &
pipelines

Run
automated

tests

Tag and store
artifacts

Deploy to
target

environment

Artifact
Store

Training
datasets

Model
Registry

Continuous training

Source
code

ML pipeline
Artifacts

Trained
Models

Model
Valid.

Data
Extraction

Data
Valid.

Data
Prep.

Model
Training

Model
Eval.

Model
Valid.

Reliable and monitored serving
Automated E2E Pipelines

Model Deployment CI/CDSource
Repository

Build Prediction
Service

Run Automated
Tests

Deploy to Target
Environment

Model
Registry

Reliable and monitored serving
Automated E2E Pipelines

Model Deployment CI/CDSource
Repository

Serving infrastructure

Build Prediction
Service

Run Automated
Tests

Deploy to Target
Environment

Log Store

Live Data

Model
Registry

Explain Evaluate MonitorPredict
ML MetadataEvaluations,

Data Drift and
Concept Drift
notifications

Performance
and event logs

Architecture overview:

• Airflow for workflow orchestration Feast for feature

• management dbt for accelerated data transformation

• MLflow for experiment tracking and model management

Source:
https://aws.amazon.com/blogs/machine-learning/building-an-efficient-mlops-platform-with-oss
-tools-on-amazon-ecs-with-aws-fargate/

“In control theory, observability is a measure of how well internal states

of a system can be inferred from knowledge of its external outputs.”

“Monitoring tells you whether a system is working;

Observability lets you understand why isn't working.”

SPEAKER

Unique ML Characteristics
Resource Patterns:

• Sustained high GPU usage during training vs consistent CPU usage in traditional apps

• Specialized GPU node scheduling vs typical short-lived batch jobs

• Variable computational demands requiring dynamic resource allocation

Monitoring Focus:

• Model-specific metrics: Accuracy, F1 scores (irrelevant for standard applications)

• Data drift monitoring: Track shifts in user preferences and data patterns

• Continuous feedback loops: Analyze interactions for targeted improvements

• Granular observations: Sometimes per-prediction monitoring vs standard application metrics

Source: https://www.dqlabs.ai/blog/impact-of-data-quality-on-model-performance/

SPEAKER

Observability
Observability = gaining insights into ML model behavior & infrastructure.

Enables Teams to:

• Quickly identify and diagnose issues

• Optimize resource usage

• Ensure compliance

• Monitor model performance and detect drift

• Track data quality and integrity

Feedback Loop:

• Continuous monitoring and retraining using real-world data

• Helps models adapt to user behavior, new data patterns, and emerging trends

• Drives better decision-making, user experience, and business value

Source: https://www.cloudlaunchpad.app/blog/observability-in-aws-eks

SPEAKER

The Need for ML Observability in MLOps

Pillar What It Covers AWS Services / Methods

Data Quality Detect schema mismatches, cardinality shifts, out-of-range
values; track distribution drift in features. (Grid Dynamics)

Use AWS SageMaker + Model Monitor; batch &
streaming ingestion; baseline jobs. (Grid Dynamics)

Fairness / Bias Pre- and post-training bias detection; monitoring predictions’
distribution across sensitive groups. (Grid Dynamics)

AWS Clarify for bias metrics; set facets; integrate
into model evaluation pipelines. (Grid Dynamics)

Explainability Understanding which features drive predictions (global & local);
detecting unjustified dependencies. (Grid Dynamics)

Methods like SHAP, LIME; use feature attribution
drift jobs; visualize top features & heatmaps. (Grid
Dynamics)

Model
Performance /
Drift

Monitoring model accuracy, recall, F1, etc.; detecting concept
drift; comparing predictions vs ground truth. (Grid Dynamics)

AWS Model Monitor, performance / drift jobs;
optionally use open-source libs like nannyml. (Grid
Dynamics)

https://www.griddynamics.com/blog/how-to-enhance-mlops-with-ml-observability-features-a-guide-for-aws-users
https://www.griddynamics.com/blog/how-to-enhance-mlops-with-ml-observability-features-a-guide-for-aws-users
https://www.griddynamics.com/blog/how-to-enhance-mlops-with-ml-observability-features-a-guide-for-aws-users
https://www.griddynamics.com/blog/how-to-enhance-mlops-with-ml-observability-features-a-guide-for-aws-users
https://www.griddynamics.com/blog/how-to-enhance-mlops-with-ml-observability-features-a-guide-for-aws-users
https://www.griddynamics.com/blog/how-to-enhance-mlops-with-ml-observability-features-a-guide-for-aws-users
https://www.griddynamics.com/blog/how-to-enhance-mlops-with-ml-observability-features-a-guide-for-aws-users
https://www.griddynamics.com/blog/how-to-enhance-mlops-with-ml-observability-features-a-guide-for-aws-users
https://www.griddynamics.com/blog/how-to-enhance-mlops-with-ml-observability-features-a-guide-for-aws-users
https://www.griddynamics.com/blog/how-to-enhance-mlops-with-ml-observability-features-a-guide-for-aws-users

SPEAKER

Let’s Demo

Component

Component

Component

Component

Component

Issue Timeline

Issue start Issue end

Detect Identify Fix Verify

MTTD

MTTI

MTTR

SPEAKER

How to Measuring
• Changes made to monitoring configuration

• "Out of hours" alerts

• Team alerting balance

• False positives & negatives

• Alert creation

• Alert acknowledgement

• Alert silencing and silence duration

• Unactionable alerts

• Usability: alerts, runbooks, dashboards

• MTTD, MTTR, impact

Component

Feedback

Thank you

