

SINGAPORE

A Deep Dive into AWS-native
Microservice Routing
Architecting for Resilience, Scalability, and Security
Ananda Dwi Rahmawati | Aug, 2nd 2025

Ananda Dwi Rahmawati

● Cloud & DevOps Engineer, Singapore
● AWS Container Hero
● Master of Computer Science - University of

Texas at Austin
● https://linktr.ee/misskecupbung

https://linktr.ee/misskecupbung

Agenda
● The Microservice Routing Challenge
● Key Takeaways
● Service Discovery & DNS
● Load Balancing & Edge Routing
● Security & Observability Patterns
● Demo

The Microservice Routing
Challenge

The Microservice Routing Challenge
In monoliths, routing was straightforward. In microservices,
we may face challenges like:

● Dynamic Endpoints: How do services discover each
other when instances are ephemeral and IPs change?

● Resilience: How do we handle failures, retries, and
prevent cascading issues (circuit breaking)?

● Traffic Management: How do we roll out new
versions (Canary/Blue-Green) and route by path,
headers, or weight?

● Security & Observability: How do we secure
inter-service traffic and trace requests across many
services?

Service

Service

Service Service

Service Service

Services need to communicate with each other

Key Takeaways
Dynamic Service Discovery with AWS Cloud
Map + ECS/EKS

● Enable resilient, scalable service-to-service
communication without hardcoded
endpoints.

Advanced Traffic Routing with App Mesh
● Implement blue/green deployments, traffic

shifting, retries, and timeouts using sidecar
proxies.

API Gateway vs ALB: Ingress Decision
● Choose the right ingress based on protocol

support, latency, pricing, and operational
complexity.

Securing Microservice Communication
● Use IAM roles, security groups, and

encryption to secure internal traffic and
enforce zero-trust within your VPC and
mesh.

Observability Across Microservice Routes
● Leverage AWS X-Ray, CloudWatch Logs to

trace calls, measure performance, and
troubleshoot routing issues quickly.

“Gain greater observability and reliability, reduce complexity, and
ensure high availability and fault-tolerant communication between

containerized applications using native routing patterns.”

Service Discovery & DNS

Amazon Route53

Provides DNS-based service
discovery, mapping service names to
healthy endpoints. Supports both
public and private DNS zones, health
checks, and routing policies.

AWS Cloud Map

Acts as a service registry, allowing
services to register their endpoints and
attributes. Integrates with Route 53 for
DNS-based lookups and supports
API-based discovery.

AWS Cloud MapAmazon Route53

Key Points:
● Automates endpoint management as services scale or change.
● Ensures high availability and resilience.
● Reduces manual configuration and operational overhead.

Reference:
https://aws.amazon.com/blogs/opensource/metrics-collection-from-amazo
n-ecs-using-amazon-managed-service-for-prometheus/

Service Discovery - AWS Cloud Map
Problem Solved: How do services find each other's dynamic IPs?

● Function: A managed service registry. Services
register their instances (IP, port) upon startup and
deregister on shutdown.

● Discovery Modes:
○ API Calls: Services query the Cloud Map API to

get a list of healthy endpoints. Gives most
control.

○ VPC DNS (via Route 53): Cloud Map
automatically creates and manages Route 53
records (e.g.,
users.internal.myservice.local).
Simplifies discovery for many clients.

● Integration: Natively integrates with ECS and EKS to
automate instance registration.

Registering a service with AWS Cloud Map (using AWS CLI):

aws servicediscovery create-service \
 --name my-microservice \
 --dns-config 'NamespaceId=<namespace-id>,DnsRecords=[{Type="A",TTL="60"}]'

ECS Service Discovery integration (CloudFormation YAML):

ServiceRegistries:
 - RegistryArn: !GetAtt MyServiceDiscoveryService.Arn

Load Balancing & Edge Routing

Load Balancing & Edge Routing

Amazon API Gateway AWS App Mesh ALBAWS VPC Lattice

Includes Application Load Balancer
(ALB) for HTTP/HTTPS (Layer 7) and
Network Load Balancer (NLB) for
TCP/UDP (Layer 4).

VPC Lattice is a fully managed
application networking service by
AWS. It simplifies service-to-service
connectivity, security, and traffic
management across VPCs.

Provides application-level
networking to make it easy for your
services to communicate with each
other across multiple types of
compute infrastructure.

Fully managed service for creating,
publishing, maintaining, monitoring,
and securing APIs at any scale.

Internal L7 Routing - Application Load Balancer (ALB)
Problem Solved: How do we route internal HTTP/S traffic intelligently?

● Function: A managed Layer 7 (HTTP/HTTPS) load balancer.
● Key Routing Features:

○ Path-based: api.example.com/users ->
users-service, api.example.com/orders ->
orders-service.

○ Host-based: users.api.example.com ->
users-service, orders.api.example.com ->
orders-service.

○ Header/Query String-based: Route based on custom
headers (e.g., X-Version: v2) for canary testing.

● Target Groups: Groups of backend targets (EC2, ECS,
Lambda). ALBs route traffic to a target group, which manages
health checks and distributes load.

Reference:
https://aws.amazon.com/blogs/aws/new-application-load-balancer-
simplifies-deployment-with-weighted-target-groups/

VPC Lattice
Problem Solved: How do we securely and efficiently route
service-to-service HTTP/HTTPS traffic across multiple VPCs with
centralized management and observability?

● Service Discovery: Automatically discovers services
across VPCs.

● Traffic Routing: Flexible routing, load balancing, and
path-based routing.

● Security: Integrated authentication, authorization, and
encryption.

● Observability: Built-in monitoring and logging for
network traffic.

Use Cases
● Microservices communication across VPCs.
● Centralized security and traffic controls.
● Hybrid and multi-account architectures.

Reference: https://fourtheorem.com/vpc-lattice/

Edge Routing & API Management - API Gateway
Problem Solved: How do we create a secure, managed "front door"
for our APIs?

● Function: More than a router; a fully managed
API management service.

● Key Features:
○ Routing & Integration: Routes requests to

backend services like Lambda, ECS, Step
Functions, or any HTTP endpoint.

○ Request/Response Transformation:
Modify headers, query strings, and body
content.

○ Security: Fine-grained authorization with
IAM, Cognito User Pools, and Lambda
Authorizers.

○ Lifecycle Management: Throttling, rate
limiting, usage plans, and API keys.

Reference:
https://aws.amazon.com/blogs/architecture/using-api-gateway-as-a
-single-entry-point-for-web-applications-and-api-microservices/

Advanced Routing - AWS App Mesh
Problem Solved: How do we get fine-grained traffic control, resilience,
and observability between services?

● Function: A managed service mesh based on the
Envoy proxy.

● How it Works: App Mesh injects an Envoy proxy as a
sidecar container next to each service instance. All traffic
in/out of the service is routed through the proxy, which is
centrally configured by App Mesh.

● Key Capabilities:
○ Advanced Traffic Routing: Precise weighted

routing (e.g., 99% to v1, 1% to v2 for canary
releases).

○ Resilience: Automated retries, timeouts, and
circuit breakers configured centrally.

○ Mutual TLS (mTLS): Enforces encrypted and
authenticated communication between all
services in the mesh.

Reference:
https://medium.com/avmconsulting-blog/application-net
working-service-aws-app-mesh-e8e090c4996

https://medium.com/avmconsulting-blog/application-networking-service-aws-app-mesh-e8e090c4996
https://medium.com/avmconsulting-blog/application-networking-service-aws-app-mesh-e8e090c4996

Application Load Balancer (ALB) Target Group registration (Terraform):

resource "aws_lb_target_group" "example" {
 name = "example-tg"
 port = 80
 protocol = "HTTP"
 vpc_id = "<your_vpc_id>"
}

For EC2 instance registration
resource "aws_lb_target_group_attachment" "example" {
 target_group_arn = aws_lb_target_group.example.arn
 target_id = "<instance_id>"
 port = 80
}

Resources:
 MyPrivateDnsNamespace:
 Type: AWS::ServiceDiscovery::PrivateDnsNamespace
 Properties:
 Name: my-namespace.local
 Vpc: vpc-xxxxxxxx
 Description: "Private DNS namespace for ECS service discovery"

 MyServiceDiscoveryService:
 Type: AWS::ServiceDiscovery::Service
 Properties:
 Name: my-sd-service
 NamespaceId: !Ref MyPrivateDnsNamespace
 DnsConfig:
 DnsRecords:
 - Type: A
 TTL: 60
 RoutingPolicy: MULTIVALUE

 MyEcsService:
 Type: AWS::ECS::Service
 Properties:
 # ...existing ECS service properties...
 ServiceRegistries:
 - RegistryArn: !GetAtt MyServiceDiscoveryService.Arn

ECS Service Discovery integration (CloudFormation YAML):

Observability Patterns

“Monitoring tells you whether a system is working;
Observability lets you understand why isn't working.”

Observability & Monitoring

Amazon CloudWatch AWS X-Ray AWS Managed Services
for Prometheus

Collects metrics, logs, and
events from AWS resources
and applications.

Traces requests across
distributed services, identifying
bottlenecks and failures.

Visualize key performance
indicators and set up alerts for
anomalies.

Observability in Depth

● CloudWatch: Collects metrics, logs, and
events from AWS resources and
applications.

● AWS X-Ray: Traces requests across
distributed services, identifying bottlenecks
and failures.

● Custom Metrics & Dashboards: Visualize
key performance indicators and set up alerts
for anomalies.

● App Mesh & Service Mesh Metrics:
Provides granular insights into
service-to-service communication.

Reference:
https://aws-samples.github.io/cdk-eks-blueprints-patterns/patterns/
observability/single-new-eks-awsnative-fargate-observability/

Reference:
https://aws.amazon.com/blogs/big-data/part-1-microservice-obser
vability-with-amazon-opensearch-service-trace-and-log-correlati
on

https://aws.amazon.com/blogs/big-data/part-1-microservice-observability-with-amazon-opensearch-service-trace-and-log-correlation
https://aws.amazon.com/blogs/big-data/part-1-microservice-observability-with-amazon-opensearch-service-trace-and-log-correlation
https://aws.amazon.com/blogs/big-data/part-1-microservice-observability-with-amazon-opensearch-service-trace-and-log-correlation

Demo

Demo

Thank you
@misskecupbung

