COMMUNITY DAY

aws
2

COMMUNITY DAY

A Deep Dive into AWS-native
Microservice Routing

Architecting for Resilience, Scalability, and Security
Ananda Dwi Rahmawati | Aug, 2nd 2025

aws
p —

COMMUNITY DAY

Ananda Dwi Rahmawati

e Cloud & DevOps Engineer, Singapore

AWS Container Hero

e Master of Computer Science - University of
Texas at Austin

e https://linktr.ee/misskecupbung

https://linktr.ee/misskecupbung

adws

-

COMMUNITY DAY

Agenda

The Microservice Routing Challenge
Key Takeaways

Service Discovery & DNS

Load Balancing & Edge Routing
Security & Observability Patterns
Demo

The Microservice Routing
Challenge

adws

-

COMMUNITY DAY

The Microservice Routing Challenge

In monoliths, routing was straightforward. In microservices,
we may face challenges like:

e Dynamic Endpoints: How do services discover each
other when instances are ephemeral and IPs change?

e Resilience: How do we handle failures, retries, and
prevent cascading issues (circuit breaking)?

e Traffic Management: How do we roll out new
versions (Canary/Blue-Green) and route by path,
headers, or weight?

e Security & Observability: How do we secure
inter-service traffic and trace requests across many
services?

Service

Service Ty Service

Services need to communicate with each other

Service

adws

-

COMMUNITY DAY

Key Takeaways

Dynamic Service Discovery with AWS Cloud
Map + ECS/EKS
e Enable resilient, scalable service-to-service
communication without hardcoded
endpoints.

Advanced Traffic Routing with App Mesh
e Implement blue/green deployments, traffic
shifting, retries, and timeouts using sidecar
proxies.

APl Gateway vs ALB: Ingress Decision
e Choose the right ingress based on protocol
support, latency, pricing, and operational
complexity.

Securing Microservice Communication
e Use |AMroles, security groups, and
encryption to secure internal traffic and
enforce zero-trust within your VPC and
mesh.

Observability Across Microservice Routes
e Leverage AWS X-Ray, CloudWatch Logs to
trace calls, measure performance, and
troubleshoot routing issues quickly.

COMMUNITY DAY L

“Gain greater observability and reliability, reduce complexity, and
ensure high availability and fault-tolerant communication between
containerized applications using native routing patterns.”

AWS-Native Microservice Routing Architecture

Cloud Map
Service Discovery

Application AP| Gateway

Load Balancer REST/GraphQL APls

Path-based routing Reques_l routing
Host-based routing Rate limiting

ECS Cluster EKS Cluster Observability

User Service Order Service h Functio A Search API ML Service
Port: 8080 Port: 8081 K8s Service K8s Service

X-Ray Tracing

Payment Inventory Notificatio or Cache Service Data Proc
Port: 8082 Port: 8083 K8s Service KBs Service AWS Config
/

Data Layer

DynamoDB ElastiCache s3 OpenSearch SQS/SNS
PostgreSQL NosQL Redis Object Storage Search Engine Messaging

\

Routing Patterns
* Path-based: /api/users — User Service * Service Di y: Dy i dpoint r
+ Host-based: users.api.com — User Service + Load Balancing: Health checks & failover
+ Header-based: X-Service: orders — Order Service « Circuit Breaker: Fault tolerance patterns

Sotidtines: Primarytrafficfiow Dastedines: Servicediscovery Color Toding=Service types

Service Discovery & DNS

adws

COMMUNITY DAY

Amazon Routeb53 AWS Cloud Map
4%

Provides DNS-based service Acts as a service registry, allowing
discovery, mapping service names to Amazon Routes3 services to register their endpoints and Aws Cloud Map
healthy endpoints. Supports both attributes. Integrates with Route 53 for
public and private DNS zones, health DNS-based lookups and supports
checks, and routing policies. APIl-based discovery.

Key Points:

e Automates endpoint management as services scale or change.
e Ensures high availability and resilience.
e Reduces manual configuration and operational overhead.

adws

S

COMMUNITY DAY

Service Discovery Namespace

Service Discovery Service
Service Discovery Instance

Attributes
Y ECS_CLUSTER_NAME = ec2-prometheus-cluster
ECS_SERVICE_NAME = SVC-B

Resolve
E

Request

Reference:
https://aws.amazon.com/blogs/opensource/metrics-collection-from-amazo
n-ecs-using-amazon-managed-service-for-prometheus/

adws

S

COMMUNITY DAY

Service Discovery - AWS Cloud Map

Problem Solved: How do services find each other's dynamic IPs?

- -
o . . Isv LJ site aj : “ll @
e Function: A managed service registry. Services — rri A

register their instances (IP, port) upon startup and
deregister on shutdown.

e Discovery Modes: : Seneres
o API Calls: Services query the Cloud Map API to |
get a list of healthy endpoints. Gives most el ,nmg!m.n;l;;& o ii‘ﬁ;‘:;;‘il?;:;‘::;:
control. P L
o VPC DNS (via Route 53): Cloud Map
automatically creates and manages Route 53 . m .| ‘
records (e.g., sl B sy

users.internal.myservice.local)

Simplifies discovery for many clients.
e Integration: Natively integrates with ECS and EKS to oo
automate instance registration. v i

Proxy Agent

aws

p

COMMUNITY DAY

Registering a service with AWS Cloud Map (using AWS CLI):

aws servicediscovery create-service \
--name my-microservice \

—-—-dns-config 'Namespaceld=<namespace-id>,DnsRecords=[{Type="A", TTL="60"}]"

ECS Service Discovery integration (CloudFormation YAML):

ServiceRegistries:

- RegistryArn: !GetAtt MyServiceDiscoveryService.Arn

Load Balancing & Edge Routing

aws
p —

COMMUNITY DAY

Load Balancing & Edge Routing

Amazon APl Gateway AWS App Mesh AWS VPC Lattice ALB
Fully managed service for creating, Provides application-level VPC Lattice is a fully managed Includes Application Load Balancer
publishing, maintaining, monitoring, networking to make it easy for your application networking service by (ALB) for HTTP/HTTPS (Layer 7) and
and securing APIs at any scale. services to communicate with each AWS. It simplifies service-to-service Network Load Balancer (NLB) for
other across multiple types of connectivity, security, and traffic TCP/UDP (Layer 4).

compute infrastructure. management across VPCs.

adws

S

COMMUNITY DAY

Internal L7 Routing - Application Load Balancer (ALB)

Problem Solved: How do we route internal HTTP/S traffic intelligently?

e Function: A managed Layer 7 (HTTP/HTTPS) load balancer.
e Key Routing Features:

o Path-based: api.example.com/users ->
users-service, api.example.com/orders ->
orders-service.

o Host-based: users.api.example.com->
users-service, orders.api.example.com ->
orders-service.

o Header/Query String-based: Route based on custom
headers (e.g., X-Version: v2) for canary testing.

e Target Groups: Groups of backend targets (EC2, ECS,
Lambda). ALBs route traffic to a target group, which manages
health checks and distributes load.

aws

I
1
1
1
I
1
1
4

Reference:
https://aws.amazon.com/blogs/aws/new-application-load-balancer-
simplifies-deployment-with-weighted-target-groups/

adws

S

COMMUNITY DAY

VPC Lattice

Problem Solved: How do we securely and efficiently route
service-to-service HTTP/HTTPS traffic across multiple VPCs with
centralized management and observability?

e Service Discovery: Automatically discovers services =0
across VPCs. = .

e Traffic Routing: Flexible routing, load balancing, and . P
path-based routing. ot X -

e Security: Integrated authentication, authorization, and
encryption. i

e Observability: Built-in monitoring and logging for
network traffic.

Use Cases
e Microservices communication across VPCs.
e Centralized security and traffic controls. Reference: https://fourtheorem.com/vpc-lattice/

e Hybrid and multi-account architectures.

adws

S

COMMUNITY DAY

Edge Routing & APl Management - APl Gateway

Web client Web client

customer2.example.com

customerl.example.com \
API| Gateway

Amazon Route 53

Domain Registrar, DNS

/servicel /docs /service2

ELB @‘ ELB
Bucket
ECS Cluster “}-l Amazon EC2
(Microservices) P Auto Scaling

Reference:
https://aws.amazon.com/blogs/architecture/using-api-gateway-as-a
-single-entry-point-for-web-applications-and-api-microservices/

Problem Solved: How do we create a secure, managed "front door"
for our APIs?

Function: More than a router; a fully managed
APl management service.
Key Features:

o Routing & Integration: Routes requests to
backend services like Lambda, ECS, Step
Functions, or any HTTP endpoint.

o Request/Response Transformation:
Modify headers, query strings, and body
content.

o Security: Fine-grained authorization with
|AM, Cognito User Pools, and Lambda
Authorizers.

o Lifecycle Management: Throttling, rate
limiting, usage plans, and API keys.

adws

S

COMMUNITY DAY

Advanced Routing - AWS App Mesh

Problem Solved: How do we get fine-grained traffic control, resilience,
and observability between services?

e Function: A managed service mesh based on the A
Envoy proxy. NGy e

e How it Works: App Mesh injects an Envoy proxy as a
sidecar container next to each service instance. All traffic
in/out of the service is routed through the proxy, which is
centrally configured by App Mesh.

e Key Capabilities:

o Advanced Traffic Routing: Precise weighted
routing (e.g., 99% to v1, 1% to v2 for canary
releases).

o Resilience: Automated retries, timeouts, and
circuit breakers configured centrally.

o Mutual TLS (mTLS): Enforces encrypted and

authenticated communication between all Reference:
services in the mesh. https://medium.com/avmconsulting-blog/application-net
working-service-aws-app-mesh-e8e090c49%6

https://medium.com/avmconsulting-blog/application-networking-service-aws-app-mesh-e8e090c4996
https://medium.com/avmconsulting-blog/application-networking-service-aws-app-mesh-e8e090c4996

aws
2

COMMUNITY DAY

Application Load Balancer (ALB) Target Group registration (Terraform):

resource "aws lb target group" "example" ({

name = "example-tg"
port = 80

protocol = "HTTP"

vpc id = "<your vpc id>"

}

For EC2 instance registration

resource "aws lb target group attachment" "example" ({
target group arn = aws lb target group.example.arn
target id = "<instance_ id>"
port = 80

}

aws

p

COMMUNITY DAY

ECS Service Discovery integration (CloudFormation YAML):

Resources:
MyPrivateDnsNamespace:
Type: AWS::ServiceDiscovery::PrivateDnsNamespace
Properties:
Name: my-namespace.local
VpC: VPC-XXXXXXXX
Description: "Private DNS namespace for ECS service discovery"

MyServiceDiscoveryService:
Type: AWS::ServiceDiscovery::Service
Properties:
Name: my-sd-service
NamespaceId: !Ref MyPrivateDnsNamespace
DnsConfig:
DnsRecords:
- Typel™ A
T Lglc0
RoutingPolicy: MULTIVALUE

MyEcsService:
Type: AWS::ECS::Service
Properties:
...existing ECS service properties...

ServiceRegistries:
- RegistryArn: !GetAtt MyServiceDiscoveryService.Arn

PN

Observability Patterns

a\w/s_,
COMMUNITY DAY
2

“Monitoring tells you whether a system is working;
Observability lets you understand why isn't working.”

aws

p

COMMUNITY DAY

Q

Amazon CloudWatch

Collects metrics, logs, and
events from AWS resources
and applications.

Observability & Monitoring

W

AWS X-Ray

Traces requests across
distributed services, identifying
bottlenecks and failures.

AWS Managed Services
for Prometheus

Visualize key performance
indicators and set up alerts for
anomalies.

SN

adws

S

COMMUNITY DAY

Observability in Depth

e CloudWatch: Collects metrics, logs, and : Amaczon XS Cluster
events from AWS resources and

AwS Distro For OperTelemetry

applications. " netces 07 Ppele) (“rroces 070 Pdne) (o poeetn
e AWS X-Ray: Traces requests across

distributed services, identifying bottlenecks
and failures.

e Custom Metrics & Dashboards: Visualize
key performance indicators and set up alerts
for anomalies.

e App Mesh & Service Mesh Metrics:
Provides granular insights into
service-to-service communication.

Reference:

https://aws-samples.github.io/cdk-eks-blueprints-patterns/patterns/
observability/single-new-eks-awsnative-fargate-observability/

adws

N—

COMMUNITY DAY

Event: Aug 25,2022 @ 20:15:39.466 : View surrounding events

View surrounding events nt details >

@ kubernetes: (“container_name payment-

service”, “contal 41567716976@ . dkr.ecr.us-east~1.anazonaws.com/payment
service#sha256:245259f 1c598ce756b20a2e90be8b7 f63754cf9110ad92bbb982851e2b33196¢", “host
internal”, "annota 3 newer events
kubernetes.i0/psp”:"eks privileged’), 68054159¢
Could not find any new event!
Table JSON Traces = %
Time source
1661458568 T =
2022-08-25 21:15:39 date: 1661458560 kubernetes: {"container._name”: payment
kubernetes {"container_name” :"payment-service”, “container_hash”:"415677169768.dkr.ecr.us-east-1.amazonans .com/p service”, “container_hash 677169760 dkr . ecr . us-east-1. amaz0naws . con/payment -
syment-servicedsha2 562452591 1c598¢e756b2002¢9dbe8b7163754¢19110a¢92bbLIB2851e2b33196¢”, "host™ 1 "1p-1
72-16-12-95.¢¢2. internal”, "annotations” : {"kubernetes.0/psp” i “eks.privileged”), "docker_1d" " 60054159
c9ddebaafblaBa8de1965392b6bB6300f4ce7fb3B6013a7b5d27¢227", "pod.1d" : "33ebBI3b-2d2¢-4123-87ea- 71980193 2.internal annotations
‘'a o B 2= ¥ aid3i e g
d967°, "container_image” :"415677169760.dkr .ecr.us-east-1.amazonaws .cos/payment-service:latest”, “pod.n P iibarnatan 2o et " ae ‘neivAlas ~docker_1d" : “60054159¢9ddebaafbB0sAde 9653926686300 f4ceT fb3I060
ame” :"payment-service-66dbecdib-89mkb ™, “namespace_name” :"payment-service”, "labels”™: {“app”:“payment-s
ervice”, “pod-template-hash” : "66dbccdsd” })

service®sha2$h 12452591 1c599ce756020a2e90be8b7 16375419110 bb982851e2b33196¢ host

Could not find any old event!
2622-88-25 20:15:39,466 ERROR [__main__] [paymentService.py:77] [trace_i1d=121b9b1ccf2ad6d78e7bab5712 - t iy v
f40900 span_1d=728b70688f7fcc89 resource.service.namespoyment] - Payment - Checkout operation failed

= Service Unavailable: $S@3
older events

strean stderr
time 2022-08-25 20:15:39.466897062

traceld 21090 1ccf2ad6d70e7bab5712142908
Reference:
https://aws.amazon.com/blogs/big-data/part-1-microservice-obser
vability-with-amazon-opensearch-service-trace-and-log-correlati
fola]

https://aws.amazon.com/blogs/big-data/part-1-microservice-observability-with-amazon-opensearch-service-trace-and-log-correlation
https://aws.amazon.com/blogs/big-data/part-1-microservice-observability-with-amazon-opensearch-service-trace-and-log-correlation
https://aws.amazon.com/blogs/big-data/part-1-microservice-observability-with-amazon-opensearch-service-trace-and-log-correlation

Demo

adws

COMMUNITY DAY

Demo

GET /languages/
GET /languages/

kubectl

Replicas

Frontend

ns = cloudacademy

virtual private cloud

¢

name;
name:

3 vote

EKS
Cluster-1

NodeGroup
1 x Worker

virtual private cloud

Aws
Controller

aws
2

COMMUNITY DAY

@misskecupbung

SCAN ME

