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What is MLOps?

MLOps is a set of practices that aims to deploy and maintain ML models in production reliably and 
efficiently.

Goal: Bridge the gap between ML model development and operationalization.

Analogy: DevOps for Machine Learning.



PROD

AI/ML
Platform

Data 
Lake

ML Metadata Management

Business Use 
Case

Training  
Operationalization

Continuous  
training

Model  
Deploymen
t

Prediction  
Serving

Continuous  
MonitoringML 

Development

Data and Feature 
Management

Production Applications & Processes

MLOps: quick recap



The “Ops” of MLOps
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How would you implement  
continuous delivery* with ML 
today?



Some Terminology
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Continuous delivery  in ML
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What are the challenges of  
using Cloud Build for CD?



1. Environment progression. Ability to progress releases 

between  [ dev -> staging -> prod ] environments

2. Releases. Releases should be immutable, and shall progress 

between  environments

3. Approval gates. Approvals should be configurable before rolling 

out a  release - per environment (e.g. prod)

4. Rollback. When a release fails, easily roll back to a previous one (eg, 

last  stable)

Opportunities



MLOps Challenges



MLOps Challenges on 
Kubernetes

● Complexity: Kubernetes itself has a steep 

learning curve.

● Resource Management: Optimizing GPU 

usage, managing storage.

● Data Management: Large datasets, data 

versioning, feature stores.

● Pipeline Orchestration: Building robust, 

reproducible ML pipelines.

● Model Lifecycle: Tracking models from 

development to production.

● Security: Securing data, models, and 

infrastructure.



Why Kubernetes?



Why Kubernetes?

● Portability: Run ML workloads consistently 
across cloud and on-premise.

● Scalability: Easily scale resources for training 
and serving.

● Resource Management: Efficient allocation 
and isolation of compute, memory, and GPU.

● Orchestration: Automate deployment, scaling, 
and management of containers.

● Ecosystem: Rich set of tools and integrations.





MLOps Tooling Categories



MLOps Tooling Categories

● Data Versioning & Feature Stores

● Model Training & Experiment Tracking

● Model Deployment & Serving

● Monitoring & Observability

● Pipeline Orchestration

● End-to-End Platforms

● … and many more https://github.com/kelvins/awesome-mlops 

https://github.com/kelvins/awesome-mlops


Data Versioning & Feature Stores



Data Versioning & Feature Stores

● Purpose: Manage data changes, ensure reproducibility, share features.

● Challenges: Large data volumes, schema evolution, consistency.

● Data Versioning
○ DVC (Data Version Control): Git-like versioning for data and models. Integrates with S3, GCS, HDFS.
○ Pachyderm: Data versioning and data pipelines. Built on Kubernetes.
○ LakeFS: Git-like operations on data lakes.

● Feature Stores
○ Feast: Open-source feature store. Integrates with various data sources and serving layers.
○ Hopsworks: Enterprise feature store with a strong focus on MLOps.
○ Benefits: Feature reusability, consistency, reduced training-serving skew.







Model Training & Experiment 
Tracking



Model Training & Experiment Tracking

● Purpose: Efficiently train models, track experiments, manage hyperparameters.

● Challenges: Resource allocation, reproducibility, scaling training jobs.

● Model Training
○ Kubeflow Training Operators (TFJob, PyTorchJob, MPIJob): Run distributed training jobs natively on 

Kubernetes.

○ Argo Workflows: Can be used to orchestrate complex training workflows.

○ Ray: Unified framework for scaling AI and Python applications, including distributed training.

● Experiment Tracking
○ MLflow: Open-source platform for managing the ML lifecycle, including experiment tracking.

○ Weights & Biases (W&B): Powerful experiment tracking, visualization, and collaboration platform.

○ Neptune.ai: Metadata store for MLOps, focusing on experiment tracking and model registry.





Orchestration & Pipelines



Orchestration & Pipelines

● Purpose: Automate the entire ML workflow, from data ingestion to model deployment.

● Challenges: Reproducibility, dependency management, error handling.

● Pipeline Orchestration Tools on Kubernetes
○ Kubeflow Pipelines: Component of Kubeflow, allows building and running reproducible ML pipelines.
○ Argo Workflows: Native Kubernetes workflow engine, highly flexible for ML pipelines.
○ Airflow on Kubernetes: Popular workflow orchestrator, can run tasks as Kubernetes Pods.





Model Deployment & Serving



Model Deployment & Serving

● Purpose: Expose trained models as APIs for inference.

● Challenges: Scalability, low latency, A/B testing, canary deployments.

● Model Serving Tools
○ KServe (formerly KFServing): Standardized model serving on Kubernetes. Supports various ML frameworks.
○ Seldon Core: Open-source platform for deploying ML models on Kubernetes. Advanced deployment 

strategies.
○ Triton Inference Server: NVIDIA's inference server for high-performance serving of deep learning models.

● Advanced Deployment Strategies on Kubernetes
○ Canary Deployments: Gradually shift traffic to new model versions.
○ A/B Testing: Route traffic to different model versions for comparison.
○ Blue/Green Deployments: Deploy new version alongside old, then switch traffic.
○ Tools: Istio, Linkerd (service mesh) can facilitate these strategies with KServe/Seldon.







Monitoring & Observability



Monitoring & Observability

● Purpose: Track model performance, data drift, and infrastructure health in production.

● Challenges: Defining metrics, setting up alerts, visualizing performance.

● Monitoring
○ Prometheus & Grafana: Standard for infrastructure monitoring. Can be extended for model metrics.
○ Evidently AI: Open-source tool for data drift and model performance monitoring.
○ Fiddler AI / Arize AI: Commercial platforms for ML model monitoring, explainability, and debugging.

● Observability for MLOps
○ Logging: Centralized logging (e.g., Fluentd, Loki, ELK Stack).
○ Tracing: Distributed tracing for complex inference paths (e.g., Jaeger, OpenTelemetry).
○ Alerting: Integrate with PagerDuty, Slack, etc., for critical issues.





Making the Right Choice: 
Evaluation Criteria



Making the Right Choice: Evaluation Criteria

● Open Source vs. Commercial: Cost, community support, features.

● Ease of Use & Learning Curve: For data scientists and engineers.

● Scalability & Performance: Can it handle your current and future needs?

● Integration with Existing Stack: Compatibility with your data sources, ML frameworks.

● Community Support & Documentation: Active development, helpful resources.

● Security & Compliance: Meets your organization's requirements.

● Vendor Lock-in: How easy is it to switch tools?



Simple Use Case with Guide
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Thank you.


