
Confidential Customized for Lorem Ipsum LLC Version 1.0

Choosing The Right MLOps
Tools on Kubernetes

Ananda Dwi Rahmawati

Hello World!

● Cloud & DevOps Engineer, Singapore

● AWS Container Hero, Google Developer Expert

Cloud - Modern Architecture, Open Source

Enthusiast

● Master of Computer Science - University of Texas at

Austin

● https://linktr.ee/misskecupbung

https://linktr.ee/misskecupbung

Confidential Customized for Lorem Ipsum LLC Version 1.0

Agenda

● What is MLOps and Why Kubernetes?
● Key MLOps Stages & Challenges
● Kubernetes for MLOps: The Foundation
● Kubernetes MLOps Tooling Categories
● Data Versioning & Feature Stores
● Model Training & Experiment Tracking

● Model Deployment & Serving
● Monitoring & Observability
● Making the Right Choice: Evaluation Criteria
● Simple Use Case with Guide
● Q&A

What is MLOps?

MLOps is a set of practices that aims to deploy and maintain ML models in production reliably and
efficiently.

Goal: Bridge the gap between ML model development and operationalization.

Analogy: DevOps for Machine Learning.

PROD

AI/ML
Platform

Data
Lake

ML Metadata Management

Business Use
Case

Training
Operationalization

Continuous
training

Model
Deploymen
t

Prediction
Serving

Continuous
MonitoringML

Development

Data and Feature
Management

Production Applications & Processes

MLOps: quick recap

The “Ops” of MLOps

PROD

AI/ML
Platform

Data
Lake

ML Metadata
Management

Business Use
Case

Training
Operationalization

Continuous
training

Model
Deploymen
t

Prediction
Serving

Continuous
MonitoringML

Development

Data and Feature
Management

Production Applications & Processes

How would you implement
continuous delivery* with ML
today?

Some Terminology

Continuous delivery in ML

Data Lake

ML Development

ML Staging

Build STAGING

ML
Production

Build PROD

Continuous delivery in ML

Data Lake

ML Development

ML Staging

Build STAGING

ML
Production

Build PROD
What are the challenges of
using Cloud Build for CD?

1. Environment progression. Ability to progress releases

between [dev -> staging -> prod] environments

2. Releases. Releases should be immutable, and shall progress

between environments

3. Approval gates. Approvals should be configurable before rolling

out a release - per environment (e.g. prod)

4. Rollback. When a release fails, easily roll back to a previous one (eg,

last stable)

Opportunities

MLOps Challenges

MLOps Challenges on
Kubernetes

● Complexity: Kubernetes itself has a steep

learning curve.

● Resource Management: Optimizing GPU

usage, managing storage.

● Data Management: Large datasets, data

versioning, feature stores.

● Pipeline Orchestration: Building robust,

reproducible ML pipelines.

● Model Lifecycle: Tracking models from

development to production.

● Security: Securing data, models, and

infrastructure.

Why Kubernetes?

Why Kubernetes?

● Portability: Run ML workloads consistently
across cloud and on-premise.

● Scalability: Easily scale resources for training
and serving.

● Resource Management: Efficient allocation
and isolation of compute, memory, and GPU.

● Orchestration: Automate deployment, scaling,
and management of containers.

● Ecosystem: Rich set of tools and integrations.

MLOps Tooling Categories

MLOps Tooling Categories

● Data Versioning & Feature Stores

● Model Training & Experiment Tracking

● Model Deployment & Serving

● Monitoring & Observability

● Pipeline Orchestration

● End-to-End Platforms

● … and many more https://github.com/kelvins/awesome-mlops

https://github.com/kelvins/awesome-mlops

Data Versioning & Feature Stores

Data Versioning & Feature Stores

● Purpose: Manage data changes, ensure reproducibility, share features.

● Challenges: Large data volumes, schema evolution, consistency.

● Data Versioning
○ DVC (Data Version Control): Git-like versioning for data and models. Integrates with S3, GCS, HDFS.
○ Pachyderm: Data versioning and data pipelines. Built on Kubernetes.
○ LakeFS: Git-like operations on data lakes.

● Feature Stores
○ Feast: Open-source feature store. Integrates with various data sources and serving layers.
○ Hopsworks: Enterprise feature store with a strong focus on MLOps.
○ Benefits: Feature reusability, consistency, reduced training-serving skew.

Model Training & Experiment
Tracking

Model Training & Experiment Tracking

● Purpose: Efficiently train models, track experiments, manage hyperparameters.

● Challenges: Resource allocation, reproducibility, scaling training jobs.

● Model Training
○ Kubeflow Training Operators (TFJob, PyTorchJob, MPIJob): Run distributed training jobs natively on

Kubernetes.

○ Argo Workflows: Can be used to orchestrate complex training workflows.

○ Ray: Unified framework for scaling AI and Python applications, including distributed training.

● Experiment Tracking
○ MLflow: Open-source platform for managing the ML lifecycle, including experiment tracking.

○ Weights & Biases (W&B): Powerful experiment tracking, visualization, and collaboration platform.

○ Neptune.ai: Metadata store for MLOps, focusing on experiment tracking and model registry.

Orchestration & Pipelines

Orchestration & Pipelines

● Purpose: Automate the entire ML workflow, from data ingestion to model deployment.

● Challenges: Reproducibility, dependency management, error handling.

● Pipeline Orchestration Tools on Kubernetes
○ Kubeflow Pipelines: Component of Kubeflow, allows building and running reproducible ML pipelines.
○ Argo Workflows: Native Kubernetes workflow engine, highly flexible for ML pipelines.
○ Airflow on Kubernetes: Popular workflow orchestrator, can run tasks as Kubernetes Pods.

Model Deployment & Serving

Model Deployment & Serving

● Purpose: Expose trained models as APIs for inference.

● Challenges: Scalability, low latency, A/B testing, canary deployments.

● Model Serving Tools
○ KServe (formerly KFServing): Standardized model serving on Kubernetes. Supports various ML frameworks.
○ Seldon Core: Open-source platform for deploying ML models on Kubernetes. Advanced deployment

strategies.
○ Triton Inference Server: NVIDIA's inference server for high-performance serving of deep learning models.

● Advanced Deployment Strategies on Kubernetes
○ Canary Deployments: Gradually shift traffic to new model versions.
○ A/B Testing: Route traffic to different model versions for comparison.
○ Blue/Green Deployments: Deploy new version alongside old, then switch traffic.
○ Tools: Istio, Linkerd (service mesh) can facilitate these strategies with KServe/Seldon.

Monitoring & Observability

Monitoring & Observability

● Purpose: Track model performance, data drift, and infrastructure health in production.

● Challenges: Defining metrics, setting up alerts, visualizing performance.

● Monitoring
○ Prometheus & Grafana: Standard for infrastructure monitoring. Can be extended for model metrics.
○ Evidently AI: Open-source tool for data drift and model performance monitoring.
○ Fiddler AI / Arize AI: Commercial platforms for ML model monitoring, explainability, and debugging.

● Observability for MLOps
○ Logging: Centralized logging (e.g., Fluentd, Loki, ELK Stack).
○ Tracing: Distributed tracing for complex inference paths (e.g., Jaeger, OpenTelemetry).
○ Alerting: Integrate with PagerDuty, Slack, etc., for critical issues.

Making the Right Choice:
Evaluation Criteria

Making the Right Choice: Evaluation Criteria

● Open Source vs. Commercial: Cost, community support, features.

● Ease of Use & Learning Curve: For data scientists and engineers.

● Scalability & Performance: Can it handle your current and future needs?

● Integration with Existing Stack: Compatibility with your data sources, ML frameworks.

● Community Support & Documentation: Active development, helpful resources.

● Security & Compliance: Meets your organization's requirements.

● Vendor Lock-in: How easy is it to switch tools?

Simple Use Case with Guide

References

References

● https://atlan.com/pachyderm-data-lineage/

● https://github.com/AlexIoannides/kubernetes-mlops

● https://github.com/awesome-mlops/awesome-mlops-kubernetes

● https://play.grafana.org/

● https://medium.com/@craftworkai/utilizing-kubernetes-for-an-effective-mlops-platform-efc9832

5eaca

● https://www.datacamp.com/blog/top-mlops-tools

● https://github.com/kubeflow/pipelines/blob/master/developer_guide.md

● https://minikube.sigs.k8s.io/

● https://kubernetes.io/docs/tasks/tools/

● https://alexioannides.com/2019/01/10/deploying-python-ml-models-with-flask-docker-and-kube

rnetes/

https://atlan.com/pachyderm-data-lineage/
https://github.com/AlexIoannides/kubernetes-mlops
https://github.com/awesome-mlops/awesome-mlops-kubernetes
https://play.grafana.org/
https://medium.com/@craftworkai/utilizing-kubernetes-for-an-effective-mlops-platform-efc98325eaca
https://medium.com/@craftworkai/utilizing-kubernetes-for-an-effective-mlops-platform-efc98325eaca
https://www.datacamp.com/blog/top-mlops-tools
https://github.com/kubeflow/pipelines/blob/master/developer_guide.md
https://minikube.sigs.k8s.io/
https://kubernetes.io/docs/tasks/tools/
https://alexioannides.com/2019/01/10/deploying-python-ml-models-with-flask-docker-and-kubernetes/
https://alexioannides.com/2019/01/10/deploying-python-ml-models-with-flask-docker-and-kubernetes/

Thank you.

