
Choosing The Right MLOps Tools on Kubernetes

Ananda Dwi Rahmawati

Hello World!

- Cloud & DevOps Engineer, Singapore
- AWS Container Hero, Google Developer Expert
Cloud - Modern Architecture, Open Source
Enthusiast
- Master of Computer Science - University of Texas at
Austin
- <https://linktr.ee/misskecupbung>

Agenda

- What is MLOps and Why Kubernetes?
- Key MLOps Stages & Challenges
- Kubernetes for MLOps: The Foundation
- Kubernetes MLOps Tooling Categories
- Data Versioning & Feature Stores
- Model Training & Experiment Tracking
- Model Deployment & Serving
- Monitoring & Observability
- Making the Right Choice: Evaluation Criteria
- Simple Use Case with Guide
- Q&A

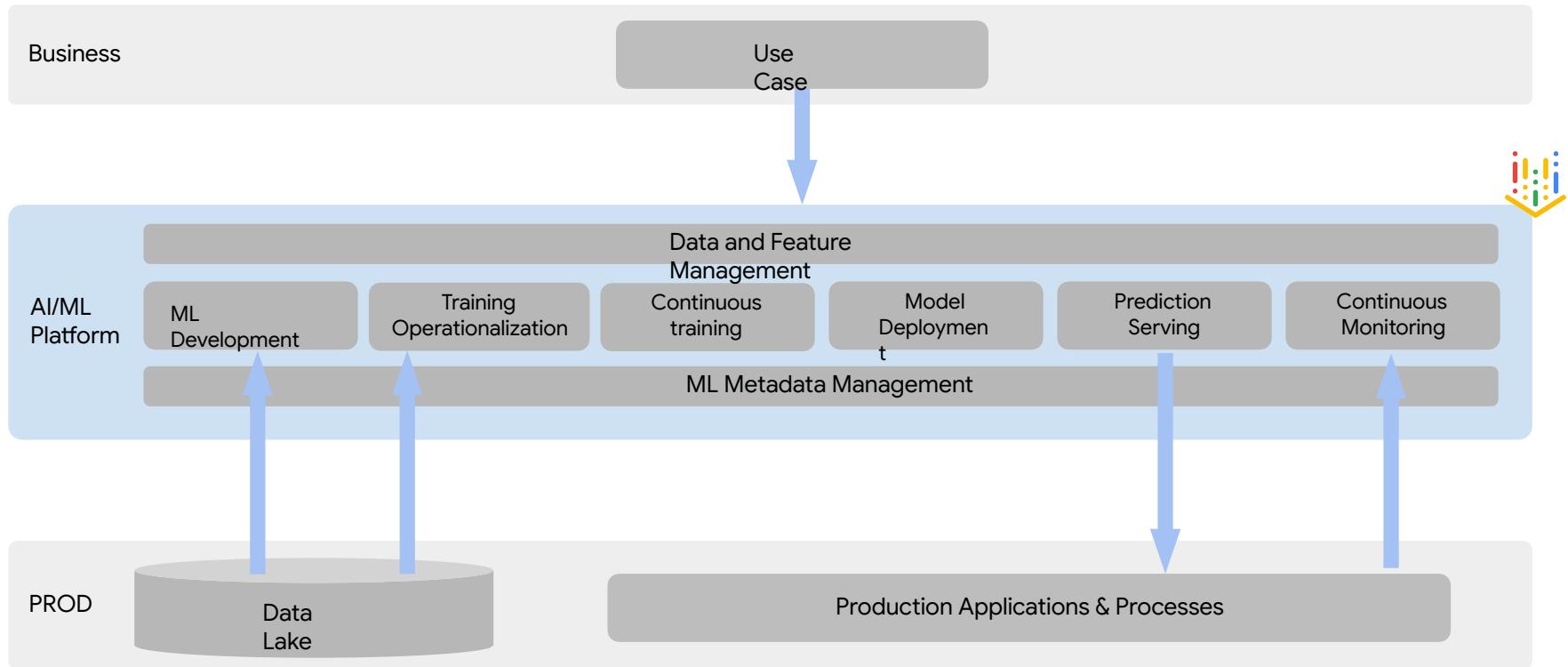
What is MLOps?

MLOps is a **set of practices** that aims to deploy and maintain ML models in production reliably and efficiently.

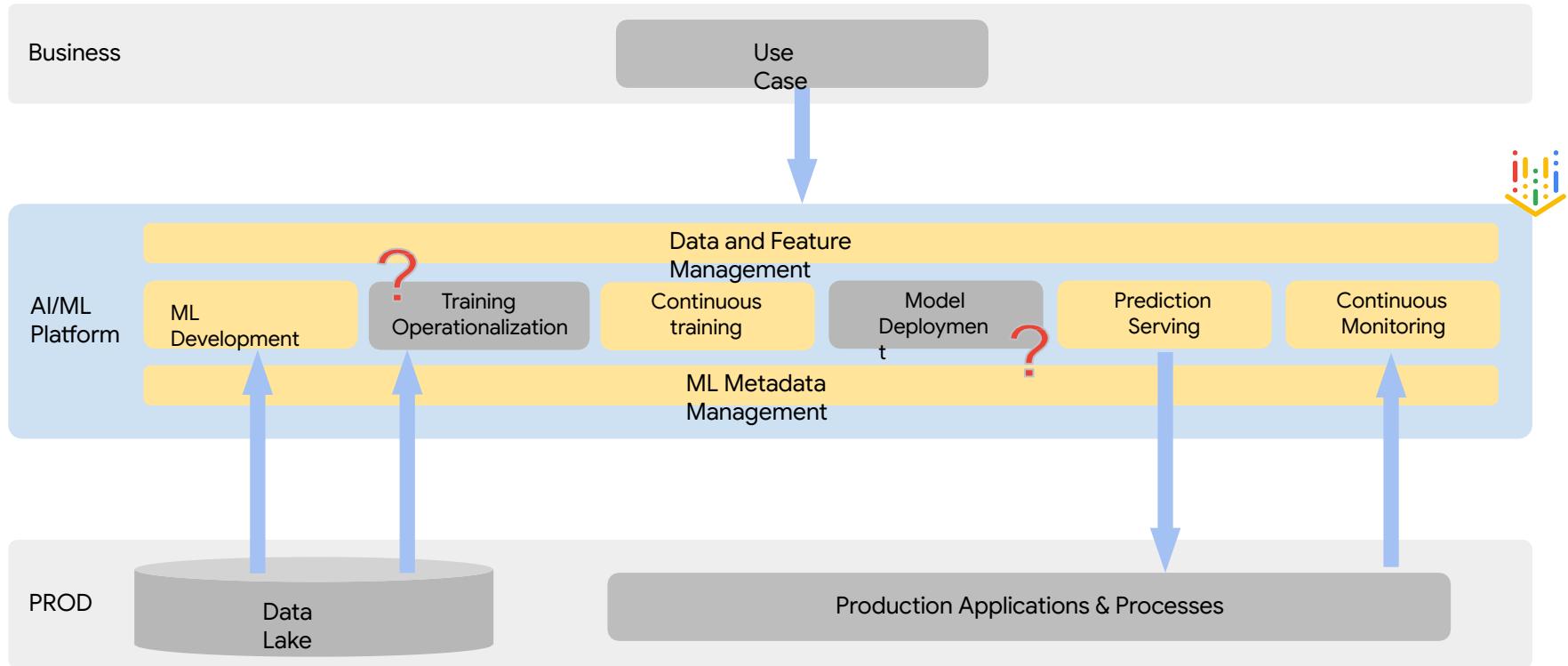
Goal: Bridge the gap between ML model development and operationalization.

Analogy: DevOps for Machine Learning.

MLOps: quick recap

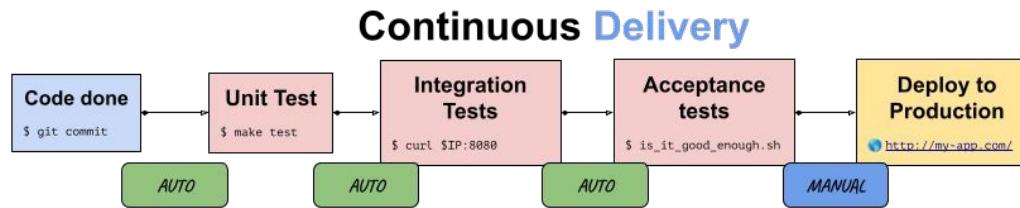
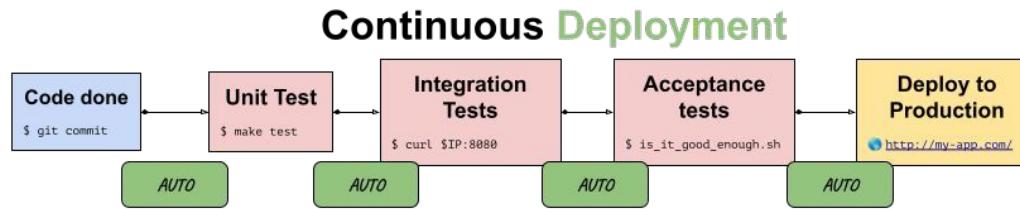


The “Ops” of MLOps

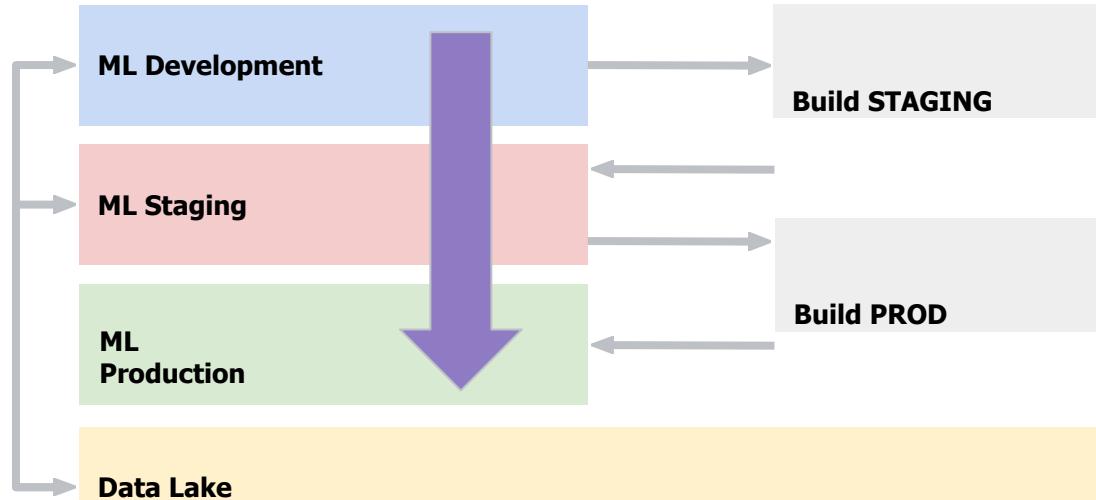


How would you implement
continuous delivery* with ML
today?

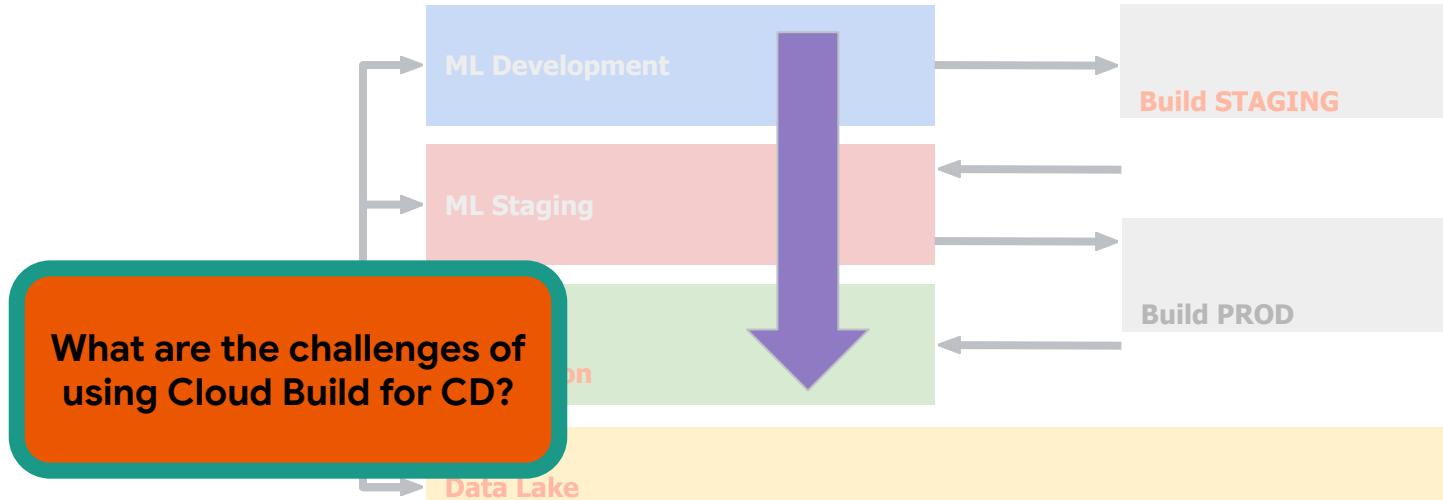
Some Terminology



Continuous delivery in ML



Continuous delivery in ML



Opportunities

1. **Environment progression.** Ability to progress releases between [**dev** -> **staging** -> **prod**] environments
2. **Releases.** Releases should be **immutable**, and shall progress between environments
3. **Approval gates.** Approvals should be configurable before rolling out a release - per environment (e.g. **prod**)
4. **Rollback.** When a release fails, easily roll back to a previous one (eg, last stable)

MLOps Challenges

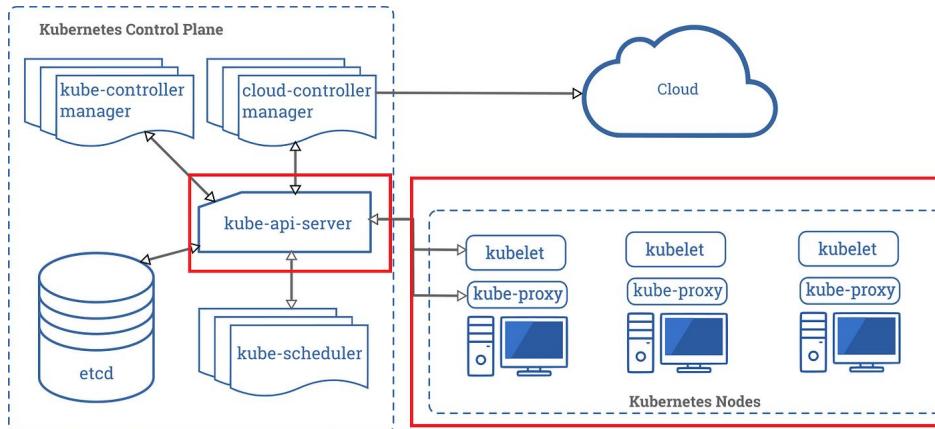
MLOps Challenges on Kubernetes

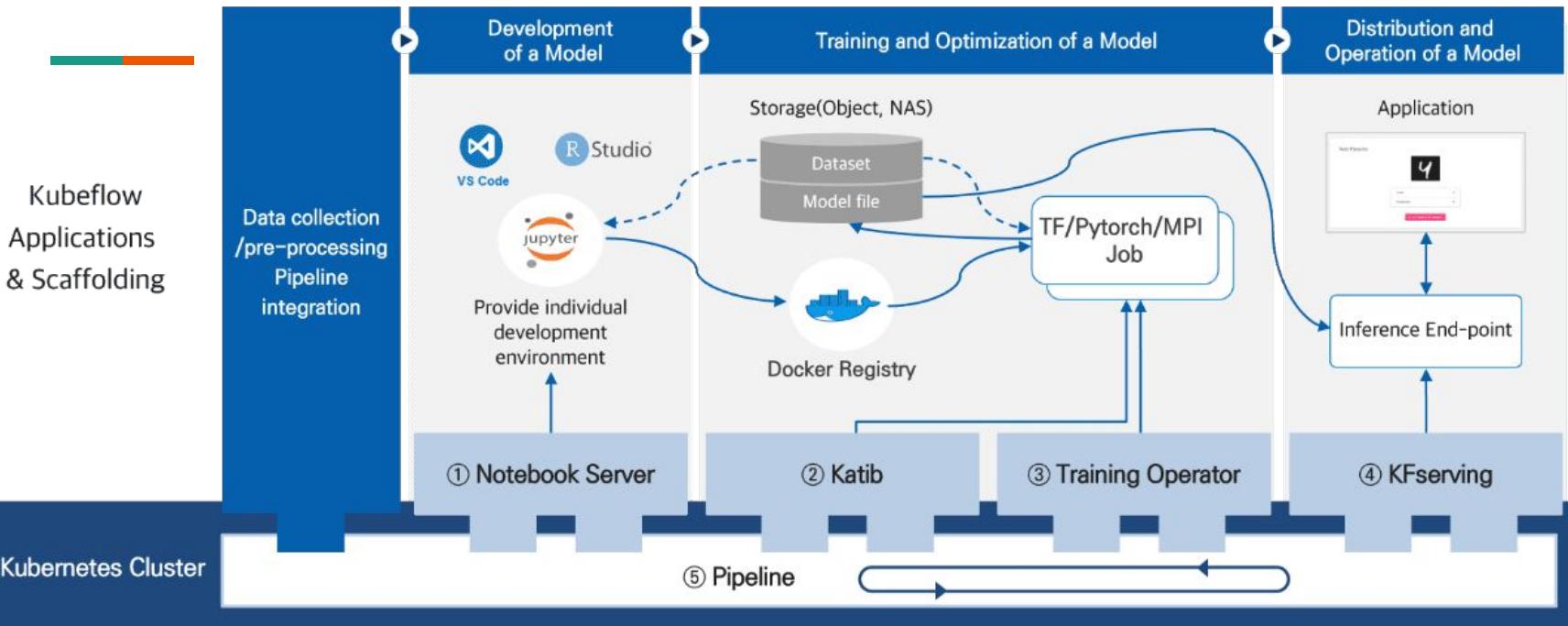
- **Complexity:** Kubernetes itself has a steep learning curve.
- **Resource Management:** Optimizing GPU usage, managing storage.
- **Data Management:** Large datasets, data versioning, feature stores.
- **Pipeline Orchestration:** Building robust, reproducible ML pipelines.
- **Model Lifecycle:** Tracking models from development to production.
- **Security:** Securing data, models, and infrastructure.

Why Kubernetes?

Why Kubernetes?

- **Portability:** Run ML workloads consistently across cloud and on-premise.
- **Scalability:** Easily scale resources for training and serving.
- **Resource Management:** Efficient allocation and isolation of compute, memory, and GPU.
- **Orchestration:** Automate deployment, scaling, and management of containers.
- **Ecosystem:** Rich set of tools and integrations.





MLOps Tooling Categories

MLOps Tooling Categories

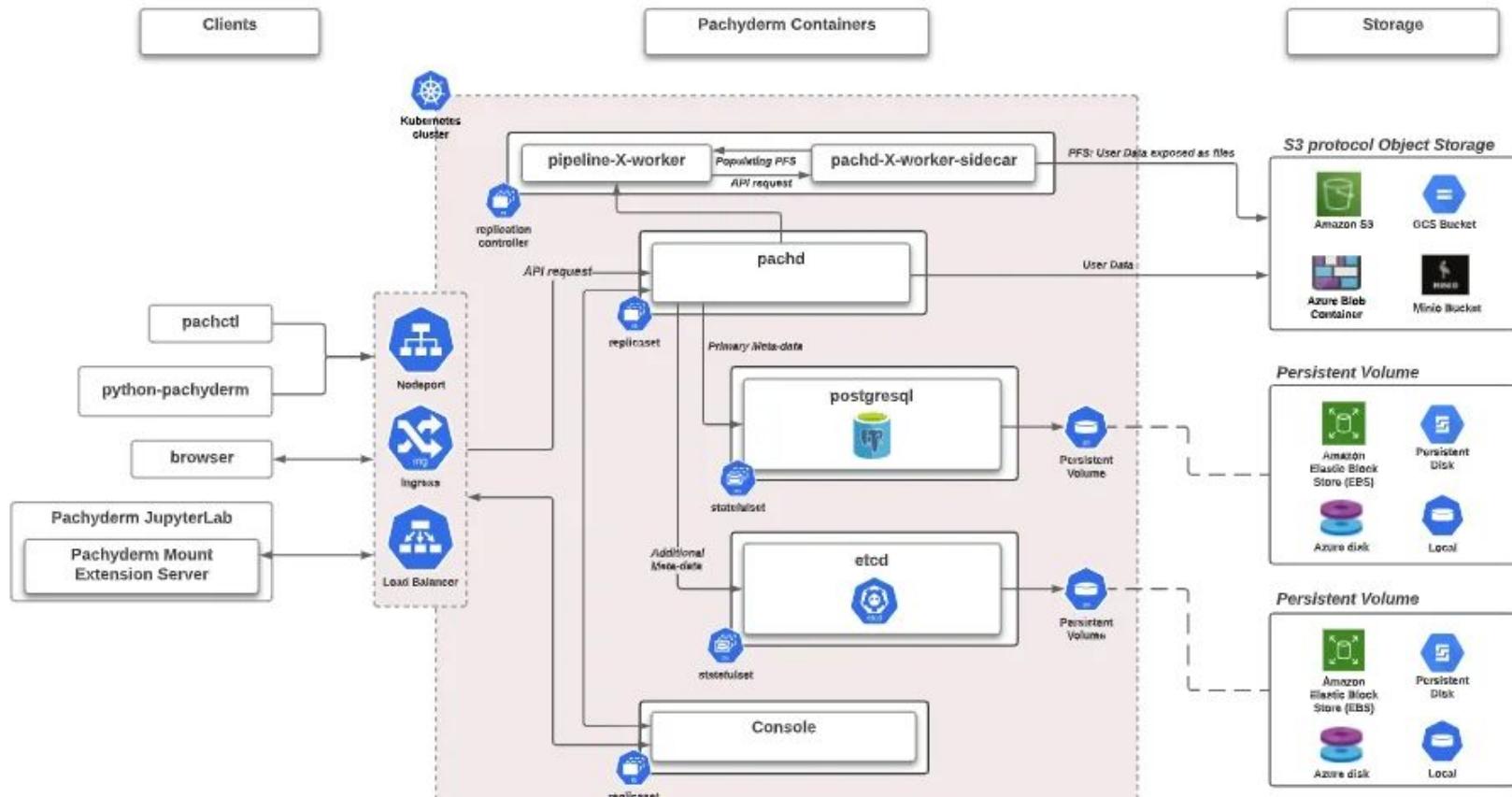
- Data Versioning & Feature Stores
- Model Training & Experiment Tracking
- Model Deployment & Serving
- Monitoring & Observability
- Pipeline Orchestration
- End-to-End Platforms
- ... and many more <https://github.com/kelvins/awesome-mlops>

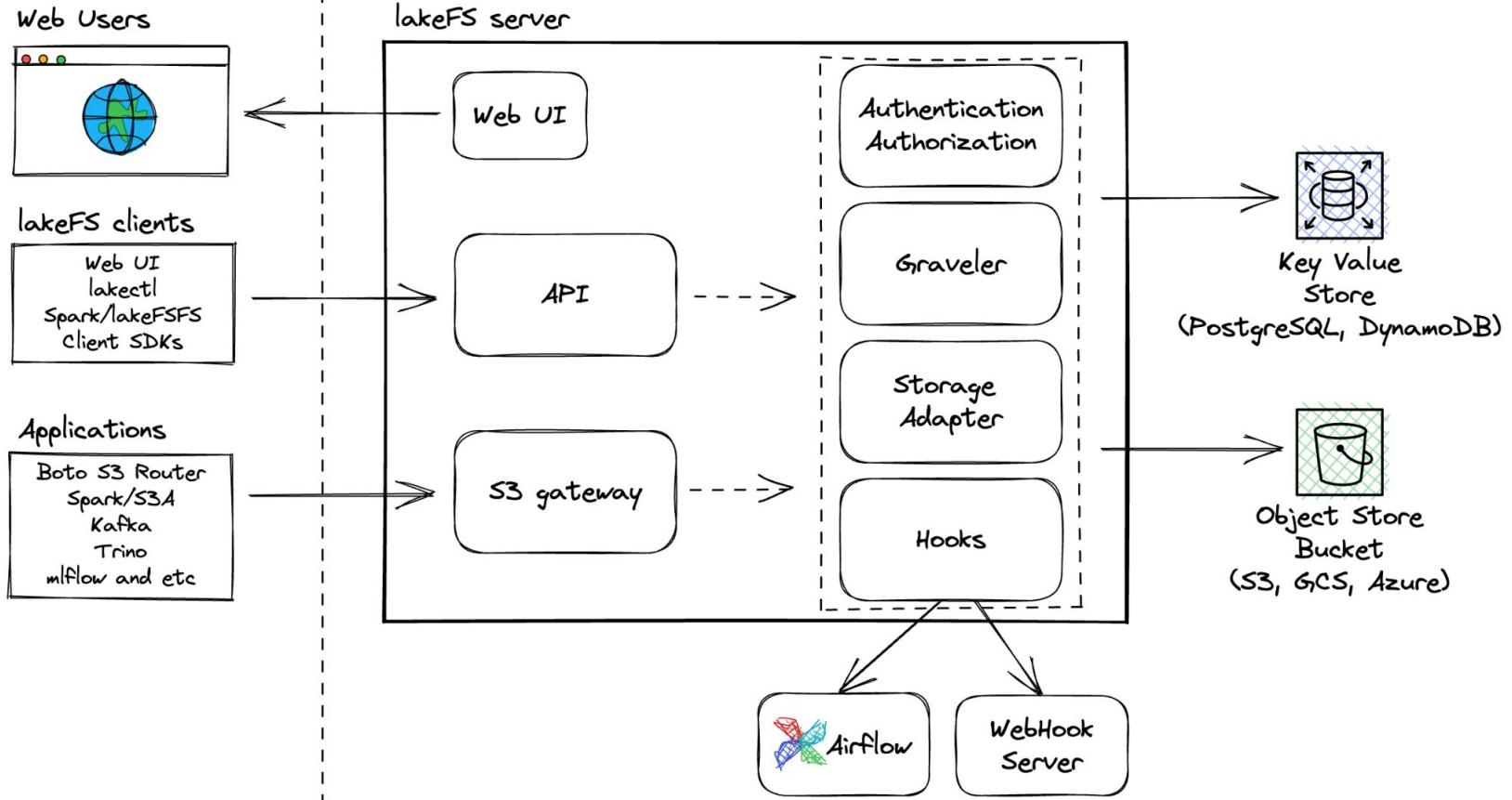
Data Versioning & Feature Stores

Data Versioning & Feature Stores

- Purpose: Manage **data changes**, ensure reproducibility, share features.
- Challenges: Large data volumes, schema evolution, **consistency**.
- Data Versioning
 - **DVC (Data Version Control)**: Git-like versioning for data and models. Integrates with S3, GCS, HDFS.
 - **Pachyderm**: Data versioning and data pipelines. Built on Kubernetes.
 - **LakeFS**: Git-like operations on data lakes.
- Feature Stores
 - **Feast**: Open-source feature store. Integrates with various data sources and serving layers.
 - **Hopworks**: Enterprise feature store with a strong focus on MLOps.
 - Benefits: Feature reusability, consistency, reduced training-serving skew.

Pachyderm Operator High level Architecture

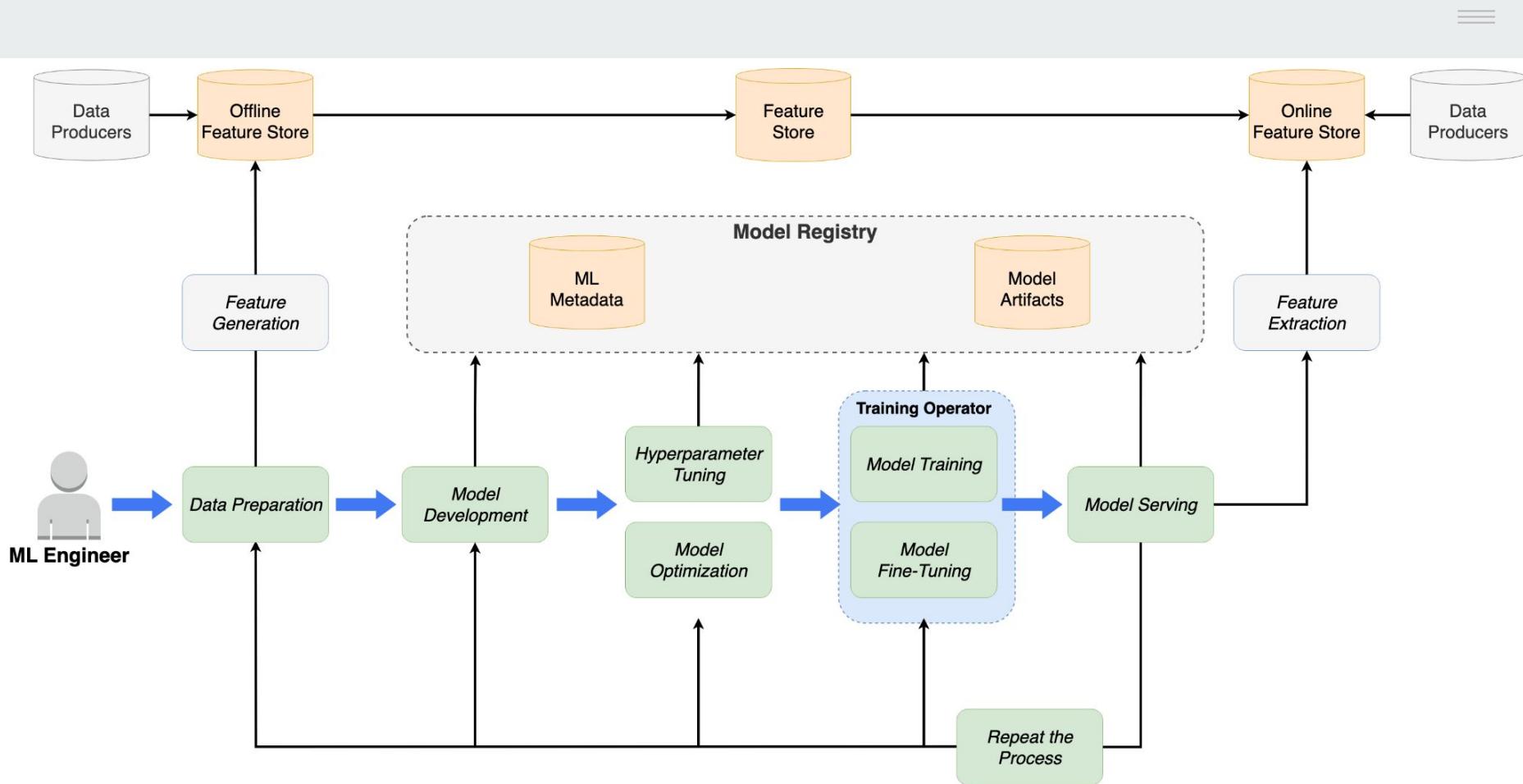




Model Training & Experiment Tracking

Model Training & Experiment Tracking

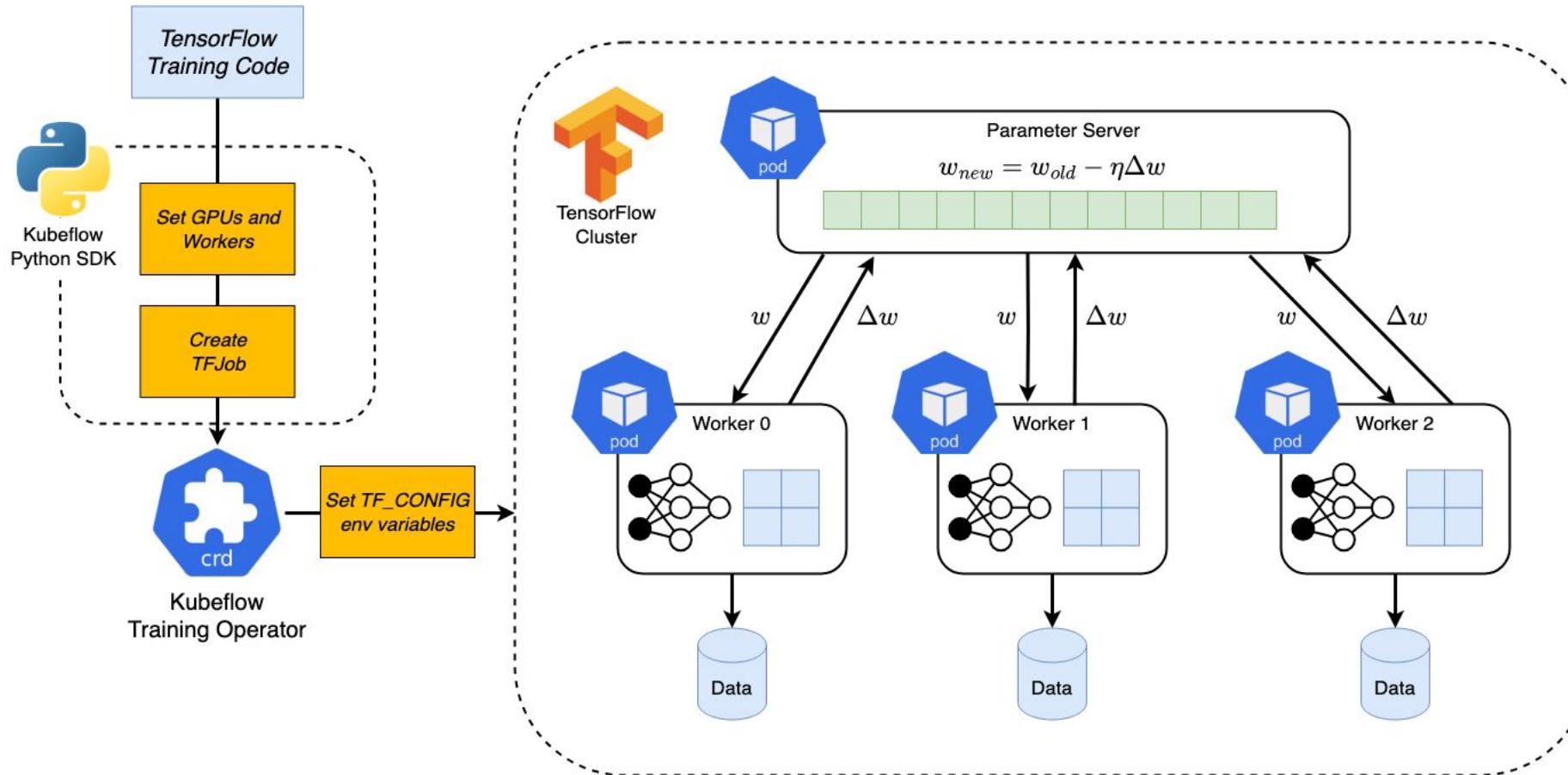
- **Purpose:** Efficiently train models, track experiments, manage hyperparameters.
- **Challenges:** Resource allocation, reproducibility, scaling training jobs.
- **Model Training**
 - **Kubeflow Training Operators** (TFJob, PyTorchJob, MPIJob): Run distributed training jobs natively on Kubernetes.
 - **Argo Workflows:** Can be used to orchestrate complex training workflows.
 - **Ray:** Unified framework for scaling AI and Python applications, including distributed training.
- **Experiment Tracking**
 - **MLflow:** Open-source platform for managing the ML lifecycle, including experiment tracking.
 - **Weights & Biases (W&B):** Powerful experiment tracking, visualization, and collaboration platform.
 - **Neptune.ai:** Metadata store for MLOps, focusing on experiment tracking and model registry.



Orchestration & Pipelines

Orchestration & Pipelines

- Purpose: Automate the entire ML workflow, from data ingestion to model deployment.
- Challenges: Reproducibility, dependency management, error handling.
- Pipeline Orchestration Tools on Kubernetes
 - Kubeflow Pipelines: Component of Kubeflow, allows building and running reproducible ML pipelines.
 - Argo Workflows: Native Kubernetes workflow engine, highly flexible for ML pipelines.
 - Airflow on Kubernetes: Popular workflow orchestrator, can run tasks as Kubernetes Pods.

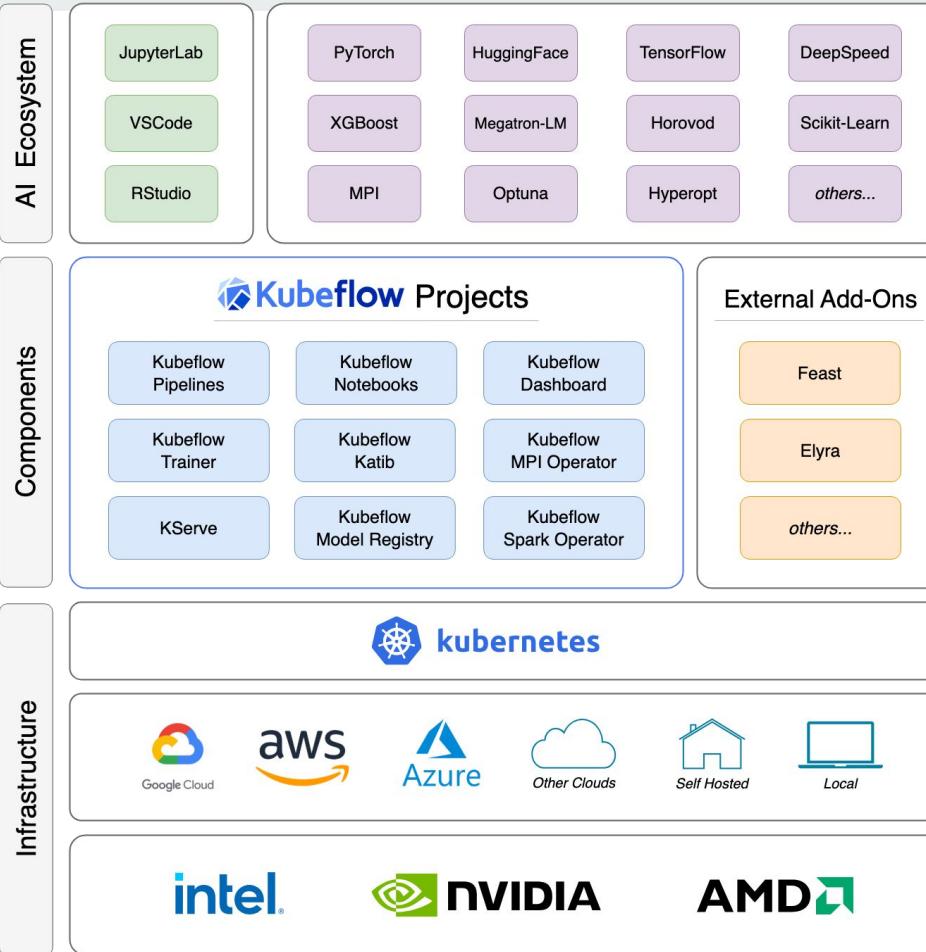


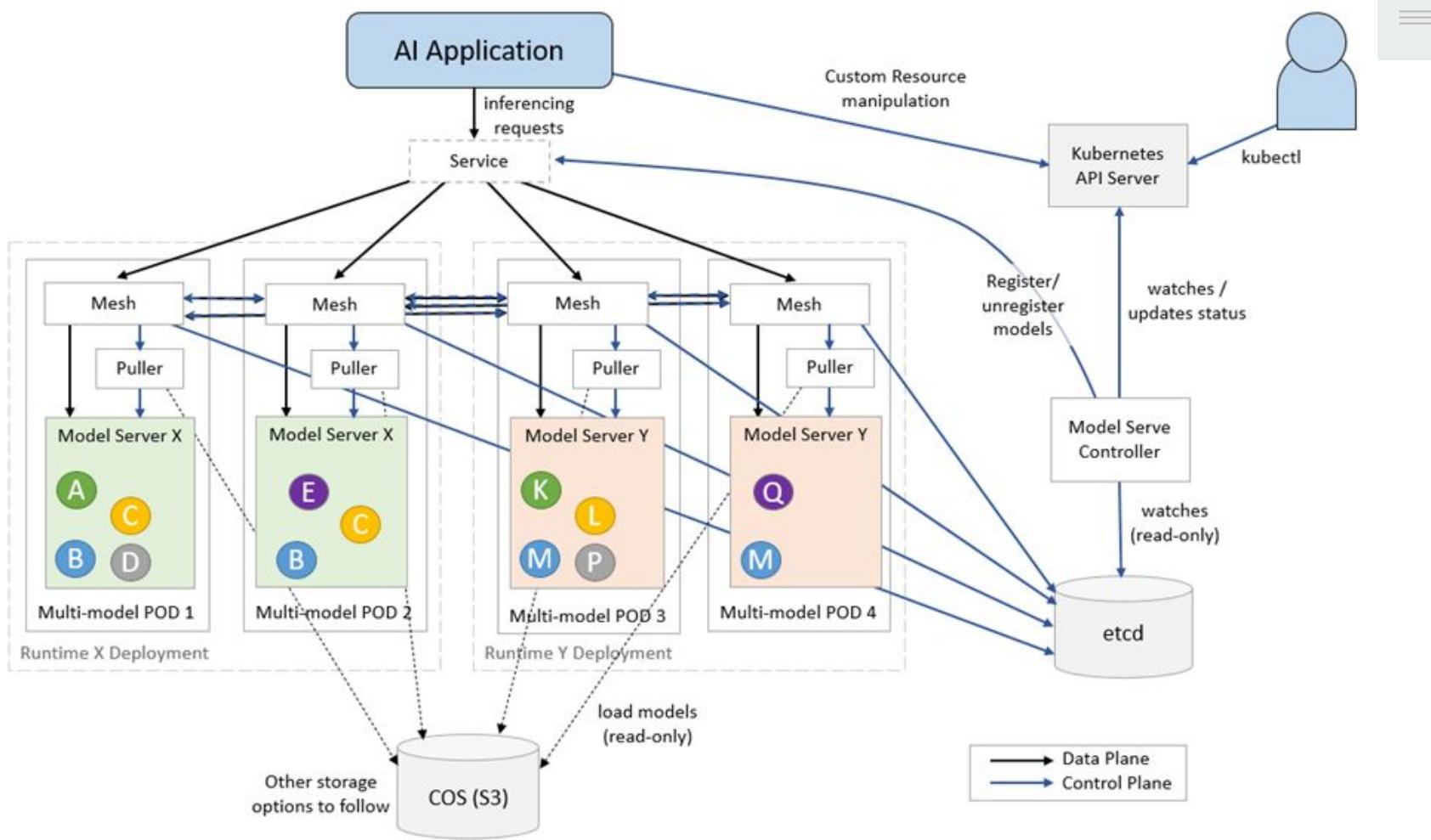
Model Deployment & Serving

Model Deployment & Serving

- Purpose: Expose trained models as APIs for inference.
- Challenges: Scalability, low latency, A/B testing, canary deployments.
- Model Serving Tools
 - KServe (formerly KFServing): Standardized model serving on Kubernetes. Supports various ML frameworks.
 - Seldon Core: Open-source platform for deploying ML models on Kubernetes. Advanced deployment strategies.
 - Triton Inference Server: NVIDIA's inference server for high-performance serving of deep learning models.
- Advanced Deployment Strategies on Kubernetes
 - Canary Deployments: Gradually shift traffic to new model versions.
 - A/B Testing: Route traffic to different model versions for comparison.
 - Blue/Green Deployments: Deploy new version alongside old, then switch traffic.
 - Tools: Istio, Linkerd (service mesh) can facilitate these strategies with KServe/Seldon.

Kubeflow Ecosystem





Monitoring & Observability

Monitoring & Observability

- Purpose: Track model performance, data drift, and infrastructure health in production.
- Challenges: Defining metrics, setting up alerts, visualizing performance.
- Monitoring
 - Prometheus & Grafana: Standard for infrastructure monitoring. Can be extended for model metrics.
 - Evidently AI: Open-source tool for data drift and model performance monitoring.
 - Fiddler AI / Arize AI: Commercial platforms for ML model monitoring, explainability, and debugging.
- Observability for MLOps
 - Logging: Centralized logging (e.g., Fluentd, Loki, ELK Stack).
 - Tracing: Distributed tracing for complex inference paths (e.g., Jaeger, OpenTelemetry).
 - Alerting: Integrate with PagerDuty, Slack, etc., for critical issues.

- Home
- Starred
- Dashboards

- Explore
- Drilldown
- Alerts & IRM
- AI & machine learning
- Testing & synthetics

- Observability
- Metrics
- Logs
- Cloud Metrics
- Cloud Metrics
- Kubernetes
- Frontend
- Administration

Kubernetes Overview

For tips on using this overview, visit the [documentation](#)

cluster

All

namespace

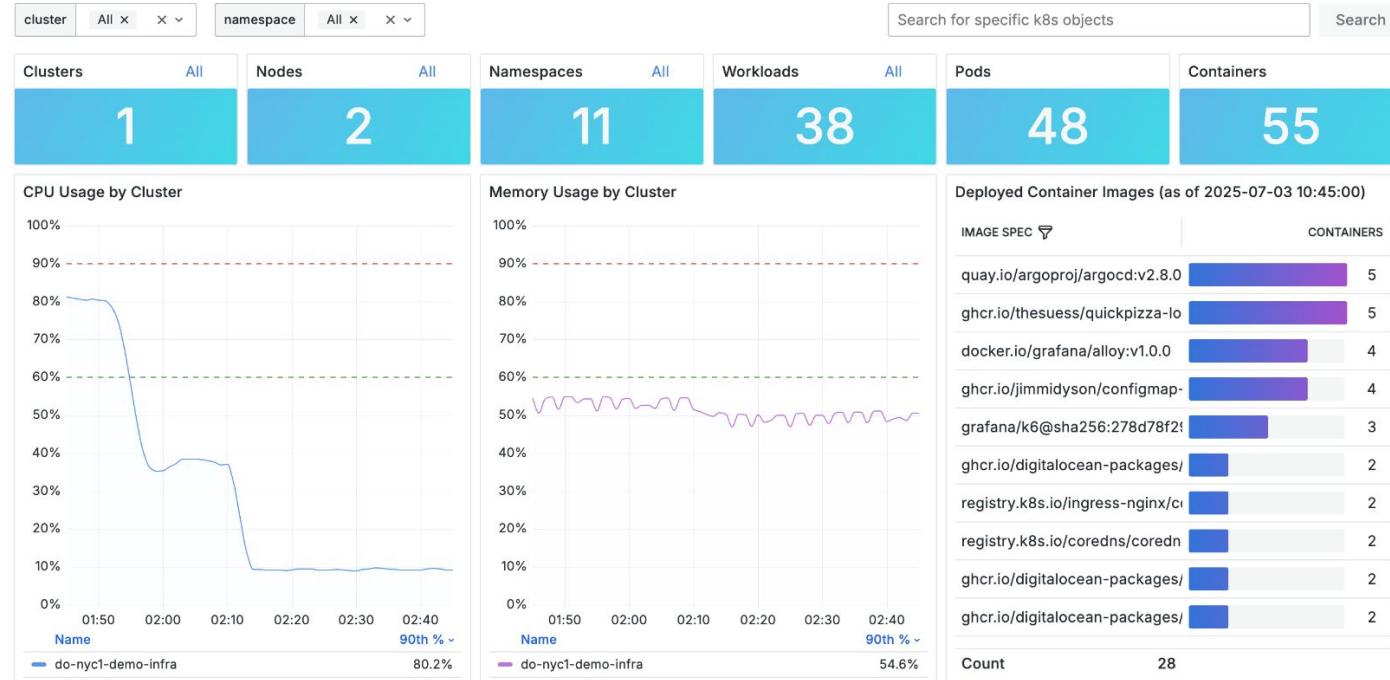
All

grafanacloud-demoinfra-prom

Last 1 hour

UTC

1m



All

Making the Right Choice: Evaluation Criteria

Making the Right Choice: Evaluation Criteria

- Open Source vs. Commercial: Cost, community support, features.
- Ease of Use & Learning Curve: For data scientists and engineers.
- Scalability & Performance: Can it handle your current and future needs?
- Integration with Existing Stack: Compatibility with your data sources, ML frameworks.
- Community Support & Documentation: Active development, helpful resources.
- Security & Compliance: Meets your organization's requirements.
- Vendor Lock-in: How easy is it to switch tools?

Simple Use Case with Guide

References

References

- <https://atlan.com/pachyderm-data-lineage/>
- <https://github.com/AlexIoannides/kubernetes-mlops>
- <https://github.com/awesome-mlops/awesome-mlops-kubernetes>
- <https://play.grafana.org/>
- <https://medium.com/@craftworkai/utilizing-kubernetes-for-an-effective-mlops-platform-efc98325eaca>
- <https://www.datacamp.com/blog/top-mlops-tools>
- https://github.com/kubeflow/pipelines/blob/master/developer_guide.md
- <https://minikube.sigs.k8s.io/>
- <https://kubernetes.io/docs/tasks/tools/>
- <https://alexioannides.com/2019/01/10/deploying-python-ml-models-with-flask-docker-and-kubernetes/>

Thank you.

