
Yogyakarta, 19 July 2025

Building Real-Time Incident
Analytics with Apache Flink and
Kafka on OpenStack
Ananda Dwi Rahmawati
Cloud & DevOps Engineer

OPENINFRA INDONESIA DAYS 2025

Ananda Dwi Rahmawati

● Cloud & DevOps Engineer, Singapore
● AWS Container Hero & Google Developer

Expert Cloud - Modern Architecture
● Master of Computer Science - University of

Texas at Austin
● Alumni of TRPL 2019, Universitas Gadjah

Mada
● https://linktr.ee/misskecupbung

2

OPENINFRA INDONESIA DAYS 2025 3

3

3

"Empowering organizations with real-time analytics
transforms incident management from reactive to
proactive, unlocking faster decisions, deeper
insights, and resilient operations."

Agenda

● Key Takeaways
● Problem Statement
● Apache Flink
● Apache Kafka
● OpenStack
● Architecture Diagram + Data Flow

4

OPENINFRA INDONESIA DAYS 2025

Agenda

● Implementation
● The Challenges
● Use Cases
● Q&A

55

Key Takeaways
• Real-time analytics is crucial for effective incident management
• Scalable, reliable, and fast data processing is essential for modern operations
• Enables proactive incident detection and mitigation
• Cloud-native technologies streamline operations and reduce costs
• Timely data insights support compliance and audit requirements

66

Problem Statement
• Traditional batch processing is slow for incident response.
• Growing data volumes and complexity.
• Need for immediate insights and automated actions.
• Difficulty in correlating incidents across multiple data sources in real time.
• Limited visibility into ongoing incidents hampers rapid decision-making.

77

Apache Flink

● Stream processing framework
● Low latency, high throughput
● Supports complex event processing
● Supports both stream and batch

processing for flexible analytics.
● Provides advanced windowing and state

management capabilities.
● Integrates easily with various data sources

and sinks.

8

OPENINFRA INDONESIA DAYS 2025

Apache Kafka

● Distributed messaging system
● Handles high-velocity data streams
● Decouples data producers and consumers
● Guarantees message durability and fault

tolerance
● Enables horizontal scaling for

high-throughput workloads
● Offers strong ecosystem support for

connectors and monitoring

99

OPENINFRA INDONESIA DAYS 2025

OpenStack Overview

● Open-source cloud platform
● Provides compute, storage, and

networking resources
● Enables dynamic scaling of analytics

infrastructure
● Supports automation and orchestration for

rapid resource provisioning.
● Enables multi-tenancy and isolation for

secure analytics environments.

10

OPENINFRA INDONESIA DAYS 2025 1111

Architecture Diagram

Data Sources (logs,
sensors, applications)

Kafka Producers
Kafka Cluster

(topics/brokers)

Flink Cluster (Stream
Jobs)

Output Sinks
(Databases, BI)

Dashboards/Alerts
(Grafana, ELK, custom

web)

● Incident Data Generation
○ Various sources (applications, sensors, logs) generate incident data

in real time.
● Kafka Producers

○ Producers collect and format incident data.
○ Data is published to specific Kafka topics.

● Kafka Cluster
○ Kafka brokers store and manage incoming data streams.
○ Ensures durability, ordering, and availability.

● Flink Consumers
○ Flink jobs subscribe to Kafka topics.
○ Flink processes data streams, applies analytics, filtering, and event

correlation.
○ Supports windowing, stateful computations, and complex event

processing.
● Output Sinks

○ Processed results are sent to:
○ Dashboards (e.g., Grafana, Kibana)
○ Alerting systems (e.g., email, SMS, Slack)
○ Databases for storage and further analysis

● Feedback/Monitoring
○ Monitoring tools track data flow, system health, and performance.

1212

Implementation Step(s)
● Set Up OpenStack Environment
● Deploy Kafka Cluster

○ Install Kafka on provisioned VMs.
○ Configure broker settings and start Kafka services.
○ Example (Kafka start):

1313

On each Kafka node
wget https://downloads.apache.org/kafka/3.6.0/kafka_2.13-3.6.0.tgz
tar -xzf kafka_2.13-3.6.0.tgz
cd kafka_2.13-3.6.0
bin/zookeeper-server-start.sh config/zookeeper.properties &
bin/kafka-server-start.sh config/server.properties &

Implementation Step(s)
● Deploy Flink Cluster

○ Install Flink on provisioned VMs.
○ Start Flink JobManager and TaskManager.
○ Example (Flink start):

1414

wget https://archive.apache.org/dist/flink/flink-1.17.1/flink-1.17.1-bin-scala_2.12.tgz
tar -xzf flink-1.17.1-bin-scala_2.12.tgz
cd flink-1.17.1
./bin/start-cluster.sh

Implementation Step(s)
● Develop Flink Jobs for Incident Analytics (Python)

○ Write a Flink job using PyFlink to consume from Kafka and process incidents.
○ Example (PyFlink job):

1515

from pyflink.datastream import StreamExecutionEnvironment
from pyflink.datastream.connectors import FlinkKafkaConsumer
from pyflink.common.serialization import SimpleStringSchema

env = StreamExecutionEnvironment.get_execution_environment()
properties = {'bootstrap.servers': 'localhost:9092', 'group.id': 'incident-group'}
consumer = FlinkKafkaConsumer(
 topics='incident-topic',
 deserialization_schema=SimpleStringSchema(),
 properties=properties
)
stream = env.add_source(consumer)
alerts = stream.filter(lambda data: 'CRITICAL' in data)
alerts.print()
env.execute('Incident Analytics Job')

The Challenges (the Next Step!)
● Managing state and fault tolerance in Flink
● Ensuring data consistency in Kafka
● Resource allocation and scaling on OpenStack
● Security and access control
● Integrating with legacy systems and diverse data sources.
● Monitoring and troubleshooting distributed components.
● Balancing performance with cost efficiency.

1616

1717

1818

1919

Yogyakarta, 19 July 2025

QnA
(Answers not Guarantee)

THANK YOU

Yogyakarta, 19 July 2025

