
Google Cloud 01

Ananda Dwi Rahmawati
Cloud & DevOps Engineer
Google Developer Expert - Cloud

Advanced Scheduling for
AI/ML: Orchestrating Ray
Applications with KubeRay
and Kueue

Google Cloud 02

What is Ray; What is
Kueue?

Agenda

GKE Scheduling Scheduling
Orchestration with
Ray and Kueue
within GKE

What’s the Next
Step

Google Cloud 03

Resource
Fragmentation
and Allocation

Workload
Preemption and
Fairness

Dynamic
Autoscaling of Ray
Clusters

Uncontrolled
Cloud Costs

Lack of Job
Prioritization

Job Queueing and
Backpressure
Management

Orchestrating distributed AI/ML workloads

Introduction - The Challenge within GKE

Inconsistent
Performance &
Predictability

Google Cloud 04

A unified framework for scaling AI and Python
applications effortlessly—from training to tuning
to serving—on any infrastructure.

What is Ray?

Google Cloud 05

1 Simplified Distributed AI

Abstracts away the complexities of distributed
programming

2 Scalability

Dynamically scale on GKE nodes, seamlessly leveraging
available CPU and GPU resources.

3 Unified Ecosystem

Provides libraries for common AI tasks

Why Ray on GKE?

Google Cloud 06

Dynamic Batching: Automatically groups incoming requests to maximize GPU utilization,
reducing latency and increasing throughput.

Ray Key Features

Designed to deploy and manage ML models and
business logic as production services

Model Composition: Easily chain multiple models or pre/post-processing steps into a single,
deployable service.

Auto-Scaling: Automatically scales inference replicas based on real-time traffic and latency
metrics.

Traffic Splitting & A/B Testing: Seamlessly route traffic to different model versions for canary
deployments or experimentation.

Python-Native: Leverage your existing Python code and AI frameworks (TensorFlow, PyTorch,
Scikit-learn).

Google Cloud 0707

Kueue
and the Challenges it solves

● In shared Kubernetes clusters, AI/ML
jobs often compete for limited,
expensive resources (like GPUs).

● Without proper queueing, jobs can
get stuck, starve, or lead to
inefficient resource allocation.

● Ensuring fair access and optimal
utilization across multiple teams or
users.

Designed to manage and schedule batch workloads,
especially common in AI/ML training and inference.

Google Cloud 08

Prioritize AI/ML tasks to
ensure production reliability
and improve cost efficiency

Orchestrate the execution of
tightly coupled AI/ML tasks to
maximize resource usage and

accelerate training

Scheduling Techniques

Priority
Scheduling

Gang
Scheduling

Google Cloud 09

Priority Scheduling

Challenge: Prioritizing Critical Batch
Workloads

● The Scenario: Our GKE cluster hosts
diverse batch workloads, including
critical RayJob-based offline inference
for production and general CI tests.

● The Problem: Finite cluster
resources mean these workloads
compete, potentially delaying vital
production tasks.

● Our Solution: Implementing Priority
Scheduling to ensure production
workloads always take precedence.

Google Cloud 010Google Cloud 010

apiVersion: kueue.x-k8s.io/v1beta1
kind: WorkloadPriorityClass
metadata:
 name: prod-priority
value: 1000
description: "Priority class for prod
jobs"

apiVersion: kueue.x-k8s.io/v1beta1
kind: WorkloadPriorityClass
metadata:
 name: dev-priority
value: 100
description: "Priority class for
development jobs"

Priority Scheduling
with Ray and Kueue
Kueue's WorkloadPriorityClass API allows
fine-grained prioritization of RayJob and
RayCluster resources within your GKE
environment

Two Key Impacts of Priority:
● Queue Order: Higher-priority

workloads are executed earlier within
the ClusterQueue

● Resource Preemption: When a
ClusterQueue lacks sufficient quota,
higher-priority incoming workloads can
trigger preemption of already
admitted, lower-priority workloads

Google Cloud 011

● The Goal: Ensuring that all components of a
distributed workload start simultaneously.

● Kueue adopts an all-or-nothing approach to
workload admission;

● RayJobs and RayClusters are scheduled only
when all their required resources are fully
available

● To improve resource efficiency by preventing
scenarios where clusters are partially
provisioned and unable to execute tasks

Gang Scheduling

Google Cloud 012

Gang Scheduling with
Ray + Kueue on GKE

● Ray job is queued until all requested resources
are available

● Kueue issues a ProvisioningRequest to GKE
● GKE’s autoscaler provisions required nodes in

one step
● Ray Pods are then scheduled together, ensuring

synchronized startup

Benefits:
● Prevents resource waste (e.g., idle GPUs)
● Improves job reliability and training efficiency
● Essential for workloads with tight inter-worker

coordinationEssential for optimizing resource utilization, especially for
limited and expensive hardware accelerators like GPUs and
TPUs in AI/ML workloads.

Google Cloud 013

Explore KubeRay & Kueue Demos

What’s the
Next Steps?

Identify & Pilot Key AI/ML Workloads

Define Priority Classes & Resource Quotas

Monitor & Optimize Performance & Costs

Google Cloud 014Google Cloud 014

Thank you
@misskecupbung

